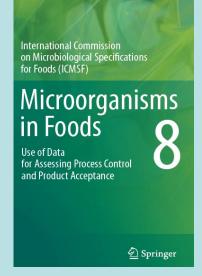


General Principles for Microbiological Sampling and Testing and ICMSF Recommendations for Poultry Products

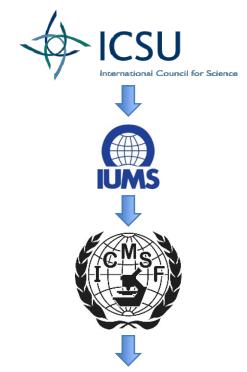
Dr Kiran Bhilegaonkar

Principal Scientist and In-charge Training and Education Centre ICAR-Indian Veterinary Research Institute, Pune, India

Acknowledgments



Dr Wayne Anderson, Ireland Dr Leon Goris, The Netherlands



- Introduction-ICMSF
- General Principles of Microbiological sampling and testing
- Examples from poultry chapter
 - Raw poultry meat
 - Dried poultry meat
- -Codex Guidelines/MRAs

ICMSF International Commission on Microbiological Specifications for Foods

Articles, books, (position) papers, tools/calculators advice to governments, Codex, FAO, WHO

ICMSF meets annually as a working party since 1962

51 meetings in 28 countries

ICMSF's mission

Be a leading source for independent and impartial scientific concepts, that when adopted by governmental agencies and industry, will reduce the incidence of microbiological foodborne illness and food spoilage worldwide and facilitate global trade.

About the ICMSF

- 18 food microbiologists from 14 different countries
- Broad professional backgrounds
- Selected on technical expertise, not as national delegates
- Complemented by an extensive network of other experts engaged as sub-commissions, working groups, consultants, reviewers, collaborators....
- All work is voluntary and without honoraria
- ICMSF recommendations have no official status

Evolution of Food Safety Management

1960s – 1980s Methods and Testing

2000s-2020s Risk Management

1980s-2000s Microbial Ecology Hygiene & HACCP

Microbiological Criteria

- Concept first introduced in ICMSF Book 2
- To manage safety and suitability of food in trade
- Concept recommends 15 Cases
 - Different sampling plan
 - To verify food lot acceptance
- Follows a risk-based approach

Rationale

- The greater the risk, the more stringent the management of the hazard needs to be
- Thus sampling plans have been selected with proportionally higher performance

MICRO

analysis:

specific applications

Second edition

ORGANISMS

IN FOODS 2 Sampling for

microbiological

Principles and

ICMSF Blackwell Scientific Publications

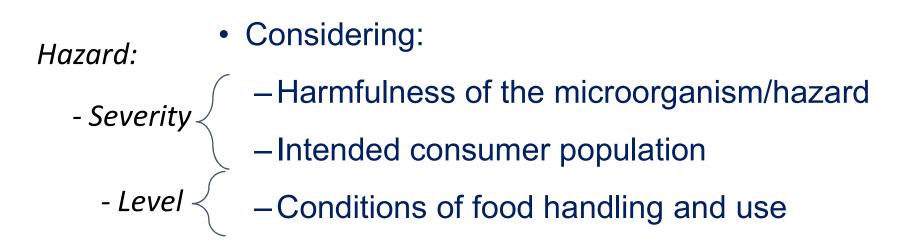
1st Edition, 1974

2nd Edition, 1986

Lot acceptance

A food lot represents a unit produced under uniform conditions

 Sampling plans with performance proportional to target microorganism or hazard are used to determine whether a lot of food is acceptable

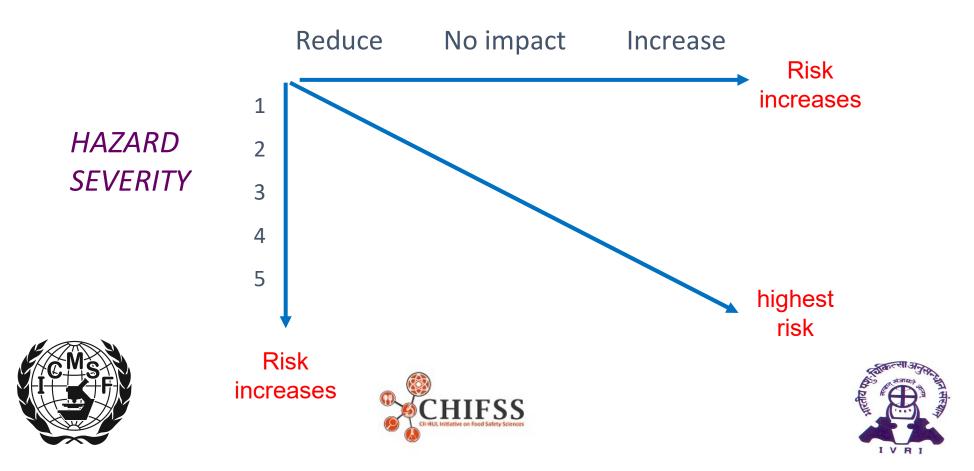


ICMSF Cases

The 15 cases reflect the relative risk

ICMSF Categories of Microorganisms/hazards

Severity	Utility	Spoilage, reduced shelf life, no health concern	<i>e.g.</i> total counts (TVC, etc.), yeast and mold		
	Indicator	Measure of GHP	<i>e.g.</i> Coliforms, Enterobacteriaceae		
	Moderate hazard	Not life threatening, short duration, self limiting, no sequelae	e.g. S. aureus, B. cereus, C. perfringens, Norovirus		
	Serious hazard	Incapacitating, usually not life threatening	e.g. Salmonellae, Shigella flexneri, Yersinia enterocolitica		
	Severe hazard	Life threatening, chronic sequelae, <i>or</i> long duration <i>or</i> designed for sensitive sub-population	e.g. E. coli O157:H7, C. botulinum toxin or Cronobacter (infants)		



Risk Categorization Matrix

Impact of food handling and use conditions on HAZARD LEVEL

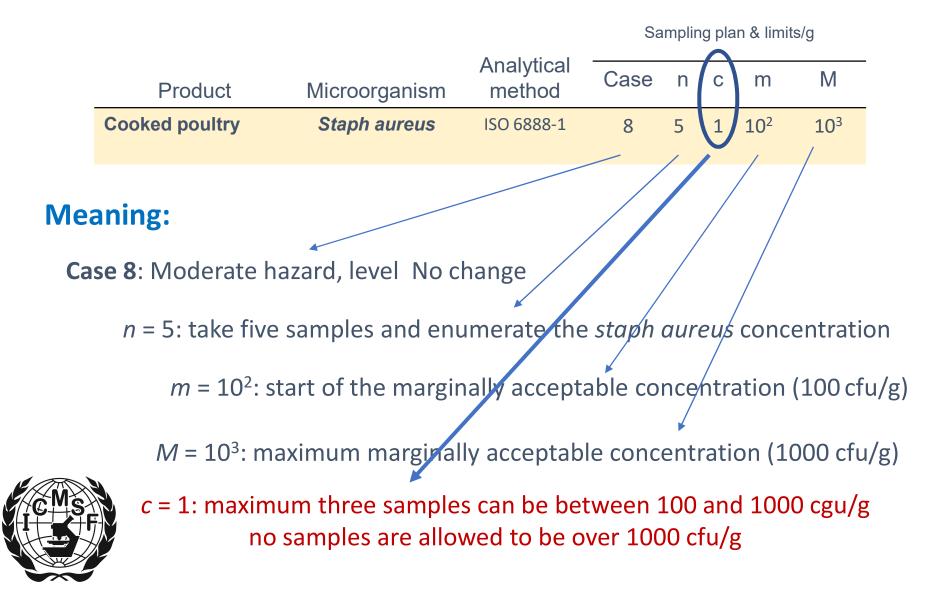
Sampling Plans for Food Lot Acceptance

	Likely Change in Level in Food Before Consumption				
Microorganism Category	Reduce	No Change	Increase		
1	Case 1	Case 2	Case 3		
2	Case 4	Case 5	Case 6		
3	Case 7	Case 8	Case 9		
4	Case 10	Case 11	Case 12		
5	Case 13	Case 14	Case 15		

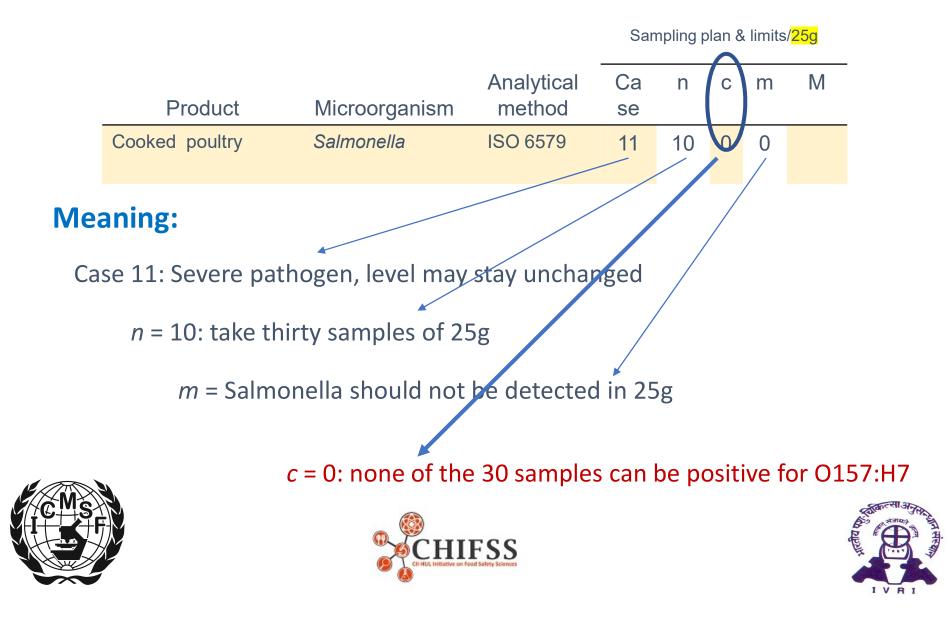
Sampling Plans for Lot acceptance

Category	Reduce	No Change	Increase	-
Utility	Case 1	Case 2	Case 3	
	n=5, c=3	n=5, c=2	n=5, c=1	
Indicator	Case 4	Case 5	Case 6	-
	n=5, c=3	n=5, c=2	n=5, c=1	Class 3 sampling plar
Moderate	Case 7	Case 8	Case 9	-
	n=5, c=2	n=5, c=1	n=10, c=1	
Serious	Case 10	Case 11	Case 12	
	n=5, c=0	n=10, c=0	n=20, c=0	Class 2
Severe	Case 13	Case 14	Case 15	- sampling plan
	n=15, c=0	n=30, c=0	n=60, c=0	

Likely Change Before Consumption

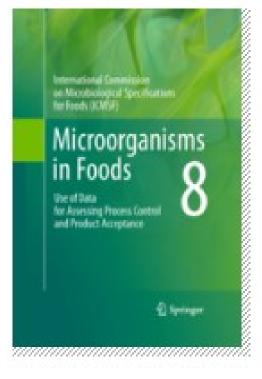

Relative performance of ICMSF cases*

	Conditions under which food is expected to be handled and consumed after sampling in the usual course of events							
	Reduce risk No change in risk May increase risk							
Utility	Case 1 3-class: n = 5, c = 3, m = 1000/g, M= 10000/g Mean conc.: 5105/g	Case 2 3-class: n = 5, c = 2, m = 1000/g, M= 10000/g Mean conc.: 3282/g	Case 3 3-class: n = 5, c = 1, m = 1000/g, M= 10000/g Mean conc.: 1829/g					
Indicator	Case 4 3-class: n = 5, c = 3, m = 100/g, M= 1000/g Mean conc.: 511/g	Case 5 3-class: n = 5, c = 2, m = 100/g, M= 10000/g Mean conc.: 328/g	Case 6 3-class: n = 5, c = 1, m = 100/g, M= 10000/g Mean conc.: 183/g					
Moderate hazard	Case 7 3-class: n = 5, c = 2, m = 10/g, M= 100/g <u>Mean conc.: 33/g</u>	Case 8 3-class: n = 5, c = 1, m = 10/g, M= 100/g Mean conc.: 18/g	Case 9 3-class: n = 10, c = 1, m = 10/g, M= 100/g <u>Mean conc.: 6/g</u>					
Serious hazard	Case 10 2-class: n = 5, c = 0, m = 0/25g Mean conc.: 1/55g	Case 11 2-class: n = 10, c = 1, m = 0/25g Mean conc.: 1/178g	Case 12 2-class: n = 20, c = 1, m = 0/25g Mean conc.: 1/495g					
Severe hazard	Case 10 2-class: n = 15, c = 0, m = 0/25g Mean conc.: 1/328g	Case 11 2-class: n = 30, c = 1, m = 0/25g Mean conc.: 1/854g	Case 12 2-class: n = 60, c = 1, m = 0/25g <u>Mean conc.: 1/2034g</u>					



* illustrated in terms of the mean concentration that will be rejected with at least 95% probability, assuming hypothetical criteria and a standard deviation of 0.8. Calculations were performed with ICMSF Microbiological Sampling plan tool Version 2.08 (<u>www.icmsf.org</u>).

Example: Cooked poultry Product-End Product Testing to verify lot acceptance (1)


Example: Cooked Product-End Product Testing to verify lot acceptance (2)

ICMSF Advice / Recommendations

Microorganisms in Foods 8

Use of Data for Assessing Process Control and Product Acceptance International Commission on Microbiological Specifications for Foods (ICMSF)

2011, 2011, XX, 400 p. 12 illus.

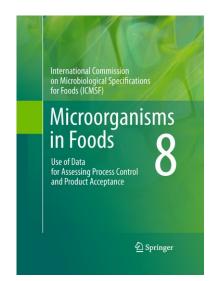
Available Formats:

Hardcover i

https://www.springer.com/gp/book/9781441993731

Latest ICMSF Advice

https://www.springer.com/gp/book/9781441993731


8: Meat Products

9: Poultry Products

- 10: Fish and Seafood Products
- 11: Feeds and Pet Food
- 12: Vegetables and Vegetable Products
- 13: Fruits and Fruit products
- 14: Spice, Dry Soups and Asian Flavourings
- **15: Cereals and Cereal Products**

Part II

- 16: Nuts, Oilseeds, Dried Legumes and Coffee
- 17: Cocoa, Chocolate and Confectionery

- 18: Oil- and Fat-Based Foods
- 19: Sugar, Syrups and Honey
- 20: Non-alcoholic Beverages
- 21: Water
- 22: Eggs and Egg Products
- 23: Milk and Dairy Products
- 24: Shelf-Stable Heat Treated Foods
- 25: Dry Foods for Infants and Young Children

26: Combination Foods

Application of Principles to Product Categories

Chapter 9: Poultry Products pg 95-106

Contents

- Raw poultry products
- Cooked poultry products
- Fully retorted shelf-stable poultry products
- Dried Poultry Products

- Significant organisms
- Relative importance and usefulness of data on Microbiological testing
 - Critical ingredients
 - In-process
 - Processing environment
 - Shelf life
 - End product

Poultry Products

Primary production

- Small farms, Extensive production
 - Control programmes on farm difficult
- Large farms, intensive indoor production
 - Control programmes for Salmonella and Campylobacter can be realised

Raw Poultry Products

Examples

- Whole Chicken
- Chicken portions/pieces

Main Pathogens

- Salmonella
- Campylobacter

Relative im	portance	Useful testing
Critical Low ingredients		Time and temperature should be controlled for raw poultry ingredients. Routine testing of non-meat ingredients, if any, is not recommended
In-process	Medium	Test whole carcass rinse or tissue samples (e.g. neck flap) to establish a baseline at various stages of processing and to evaluate where changes in the microbial populations occur during processing. Typical levels for psychrotrophs, <i>E. coli</i> and <i>Salmonella</i> depend on sampling site , sampling method and processing conditions within each factory.
Processing environment	Medium	Sample equipment surfaces before start-up to verify efficacy of cleaning and disinfecting. Typical levels encountered <500 cfu/cm ² but may vary by surface type.
Shelf life	Low	Routine shelf life testing of refrigerated product is not recommended. Testing of frozen product is also not recommended.
		Shelf life testing may be useful to validate code dates of new retail products or when new packaging systems are installed.

Raw Poultry Testing.....contd.

Relative importance

Useful testing

End Medium product

Test for indicator organisms for on-going process control and trend analysis of fresh pack product using internally developed guidelines. Typical levels encountered:

- Aerobic colony count <10⁵ CFU/g
- *E.coli* <10² CFU/g

Not usually applicable to retail product or product in the distribution chain.

Routine lot acceptance sampling is not recommended for salmonellae or *Campylobacter* on raw poultry. Outbreak investigations or new supplier certification may benefit from determining the prevalence of salmonellae or *Campylobacter* in some situations

•In countries or regions that have established performance objectives, the required sampling plan and tests should be applied

Cooked Poultry Products

- Perishable
 - Stored frozen or chilled

Examples

- Cooked sliced chicken and turkey
- Cooked chicken tikka pieces
- Cooked portions of chicken, turkey or duck

Main Pathogens

- Salmonella
- Campylobacter
- Listeria monocytogenes
- Clostridium perfringens
- Staphylococcus aureus

Relative im	portance	Useful testing			
Critical Low ingredients		These products do not contain non-poultry ingredients of significance for microbiological safety or quality			
In-process	High	Monitoring the cooking parameters is essential			
	Medium	For product that supports <i>L.monocytogenes</i> growth , post -cook samples can assess control of Listeria spp. Listeria spp. should be absent			
Processing environment	High	For products that support the growth of <i>L.monocytogenes</i> : During production sample product contact surfaces before packaging after cooking (where product exposed). Sponge or swab samples from floors and drains and other non-product contact surfaces for an early indication of the level of control. Listeria spp. should be absent			
	Medium	Sample equipment surfaces before start-up to verify efficacy of cleaning and disinfection procedures. Typical levels encountered <500 cfu/cm ² but may vary by surface type			
Shelf life Medium		Shelf life testing may be useful for chill products with extended shelflife but not frozen product			

End

ct

produ

Relative Useful testing importance

Medium Test for indicators of ongoing process control and trend analysis. Typical levels ACC 10⁴ cfu/cm²; *E. coli* absent

Sampling plan & limits/g

Product	Microorganism	Analytical method	Cas e	n	С	m	Μ
Cooked poultry (possible temperature abuse)	S. aureus	ISO 6888- 1	8	5	1	10 ²	10 ³
Cooked poultry: no growth	L. monocytogenes	ISO 11290-2	N/A	5	0	10 ²	-
Cooked uncured poultry	C. perfringens	ISO 7937	8	5	1	10 ²	10 ³
							29

Cooked Poultry Product Testing.....contd.

Relative importance Useful testing (continued)

End product

Sampling plan & limits/25g

Product	Microorganism	Analytical method	Cas e	n	C	m	Μ
Cooked poultry	Salmonella	ISO 6579	11	10	0	0	-
Cooked poultry: supports growth	L. Monocytogenes	ISO 11290- 1	N/A	5	0	0	- 30

Plan Performance Examples: cooked meat

- Geometric mean concentration (per g or ml) at 95% probability of rejection (table A3 pg 362)
 - PLAN: L.monocytogenes n=5 c=0 m=0 (25g)
 - » S.d.(0.25) = 1 cell in 44g; S.d. (0.5) = 1 cell in 49g;
 - » S.d.(0.8) = 1 cell in 55g; S.d. (1.2) = 1 cell in 62g

Dried Poultry Products

- Examples
 - Dried cooked chicken
 - Bouillon powder/paste
 - Dried salted chicken strips

- Main Pathogens
 - Salmonella

Dried Poultry Product Testing - I

Relative importanc	e	Useful testing
Critical Low ingredients		These products do not contain non-meat ingredients of significance for microbiological safety or quality
In-process	High	Monitoring the cooking and formulation parameters like pH and preservatives. The manufacturing process should be validated for control of salmonellae that are present in poultry meat
	Low	Routine microbiological testing of in-process samples is not recommended
Processing environment	Medium	Sample equipment surfaces before startup to verify cleaning and disinfection. E.g. ACC typical levels encountered <500 cfu/cm ² but may vary by surface type.
Shelf life Low		These products are inherently shelf-stable when properly dried and protected from high humidity. The higher the a _w of snack products may require verification of stability e.g. mould

Dried Poultry Product Testingcontd

Relativ importa	-	Useful tes	sting						
End product	Medium		Routine sampling is not necessary. If application of GHP and HACCP is in question, sampling for Salmonellae may be considered.						
·					Sampli	ing pla	an & I	imits/2	25 g
		Product	Microorganis m	Analytical method	Case	n	С	m	М

Dried Salmonella ISO 6579 11 Poultry

10

0

0

Plan Performance : Dried Poultry Products

- Geometric mean concentration (cfu per g) at 95% probability of rejection (Table A3, pg 362)
 - PLAN: Salmonella n=10 c=0 m=0 (25g)
 - » S.d.(0.25) = 1 cell in 93g; S.d. (0.5) = 1 cell in 120g;
 - » S.d.(0.8) = 1 cell in 180g; S.d. (1.2) = 1 cell in 310g

CODEX ALIMENTARIUS

Google Custom Search Q

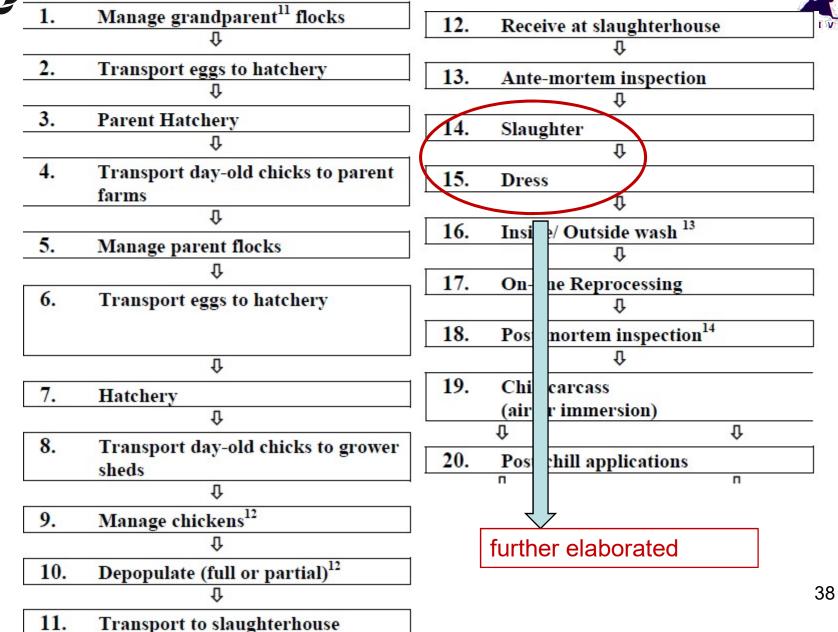
the World Health Organization

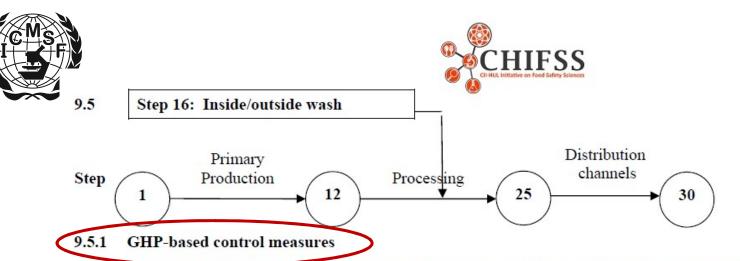
Global authority for international guidelines, standards, and recommendations on food safety

http://www.fao.org/fao-who-codexalimentarius/en/

Codex

CAC/RCP 58-2005 Page	Page 1 of 52	
CODE OF HYGIENIC PRACTICE FOR MEAT ¹		
CAC/RCP 58-2005		
1. INTRODUCTION	3	
2. SCOPE AND USE OF THIS CODE	3	
3. DEFINITIONS	4	
4. GENERAL PRINCIPLES OF MEAT HYGIENE	8	
	0	


GUIDELINES FOR THE CONTROL OF *CAMPYLOBACTER* AND *SALMONELLA* IN CHICKEN MEAT


CAC/GL 78-2011

Primary production to Consumption

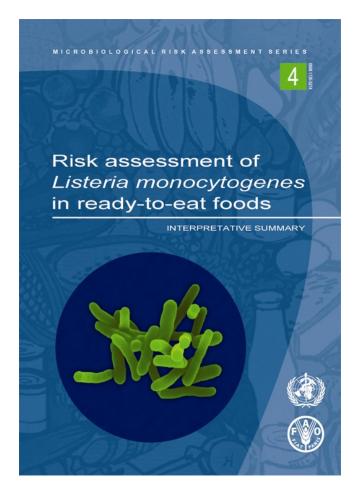
66. The inside and outside of all carcasses should be thoroughly washed, using pressure sufficient to remove visible contamination. Appropriate equipment should be used to ensure direct water contact with the carcass. The removal of contaminants may be aided by the use of brushing apparatus installed in line with the inside/outside wash

9.5.2 Hazard-based control measures

For Campylobacter

67. Carcass washing systems with 1-3 washers using water with 25-35ppm total chlorine have been shown to reduce levels of *Campylobacter* by about 0.5 log₁₀ CFU/ml of whole carcass rinse sample. Postwash sprays using Acidified Sodium Chlorite (ASC) or TSP may further reduce *Campylobacter* levels by an average of 1.3 log₁₀ CFU/ml or 1.0 log₁₀ CFU/ml of whole carcass rinse sample respectively.

For Salmonella


68. Inside/outside washing using a spray application of 20-50 ppm chlorinated water has been shown to reduce the prevalence of *Salmonella*-positive broiler carcasses from 25% to 20%. A second inside/outside washing following upon the first resulted in a reduction of *Salmonella*-positive broiler carcasses from 16%

- GHP based-controls
- Hazard-based controls

Codex guidance for control of Listeria monocytogenes in RTE food based on MRA

Some insights from MRA study:

- Vast majority of listeriosis cases results from ingestion of very high numbers of pathogen
- Consumption of low numbers of pathogen has a very low probability of causing illness
- Level of pathogen that is tolerable at the point of consumption is in the order of 100 CFU/g for generally healthy consumers
- RTE food products differ in relative presence of the pathogen and their ability to support growth of the pathogen

Control of *L. monocytogenes* in **RTE food Codex** guidelines (CAC/GL 61 – 2007)

Annex II: Microbiological Criteria

foods in which growth of *L. monocytogenes* **will not occur**, *i.e. foods that* **do not support pathogen growth** Foods in which growth of *L*.

monocytogenes can occur,

i.e. foods that **do support**

pathogen growth

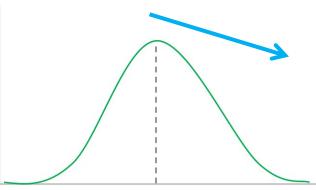
A. Foods not supporting growth of *L. monocytogenes*

n c		c m	Class Plan	-		
5 ^a	0	100 cfu/g ^b	2 °	-		
				_ N /		

Rationale:

- There is a (low) level of *Lm* that can be considered as "tolerable" for generally healthy consumers.
- Levels of *Lm* very rarely over 1000 CFU/g.
- Unsafe levels for generally healthy consumers occur very, very infrequently

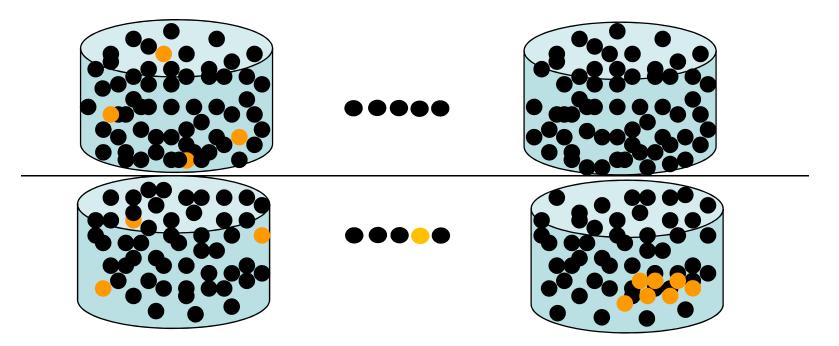
Micro Criterion performance:


- 55% of samples *below* 100 cfu/g
- 45% of samples *above* 100 cfu/g.
- 0.002% could be *above* 1000 cfu/g.

B. Foods supporting growth of *L. monocytogenes*

Rationale:

- Per default, growth is not controlled to any "safe level"
- A large safety margin is needed from levels that are considered unsafe for generally healthy consumers


Microorganism	n	с	m	Class Plan
Listeria monocytogenes	5 ^a	0	Absence in 25 g (< 0.04 cfu/g) ^b	2 °

Micro Criterion performance:

- 55 % of samples *negative*
- 45 % of sample *positive*.
- 0.5 % could be **above** 0.1 cfu/g.

Limited use of testing for food safety

End product testing a lottery ?

Positives mean something, negatives are no guarantee

Evolution: building a strong Food Safety Assurance System for food business operations*

Verification by Micro. Criteria

Critical Limits monitored

Validated Critical Control Points

Hazard Analysis Critical Control Point (HACCP)

Good practices (GHP, GMP, GAP, etc)

Design a solid food safety system Use testing to verify that food safety system works properly

Conclusions

- Microbiological testing is an integral part of food safety programs, but must be used appropriately & pragmatically
- No food safety program can rely solely on microbiological testing
- ICMSF recommendations should be used as a guideline
- Legislative microbiological standards in national and international trade need to be applied and complied with
- The ICMSF sampling plan performance calculator can be used to evaluate alternative plans. (http://www.icmsf.org/wpcontent/uploads/2018/01/Standard-Program.xlsm)

