

Effective Microbiological Testing: Dairy Products

Delivered By:

Dr. John Donaghy

Corporate Food Safety Microbiologist, Nestlé, Switzerland

International Commission on Microbiological Specifications for Foods (ICMSF)

International Commission on Microbiological Specifications for Foods (ICMSF)

Microorganisms in Foods

D Springer

Use of Data for Assessing Process Control and Product Acceptance

Chapter 23 Milk and Dairy Products

23.1 Introduction

This chapter groups a wide range of products manufactured with milk obtained from cows. They are manufactured using a wide variety of technologies and processing conditions and encompass commodities such as fluid milk, milk powders and traditional products such as cheese and other fermented milks. References on milk obtained from other animals such as sheep, goats, buffaloes, camels or horses can be found in ICMSF (2005), which also discusses different processing technologies and their impact on the microorganisms in finished products.

The Codex Alimentarius Commission (2009) established the code of hygienic practice for milk and milk products, and definitions of several products are established such as those for evaporated milk (Codex Alimentarius 1971a), sweetened condensed milk (Codex Alimentarius 1971b), whey cheese (Codex Alimentarius 1971c), cream and prepared cream (Codex Alimentarius 1976), cheese (Codex Alimentarius 1978), fresh cheese (Codex Alimentarius 2001) and milk and cream powder (Codex Alimentarius 1999a). A detailed listing of all definitions used for dairy products can be found in the General Standard for the Use of Dairy Terms (Codex Alimentarius 1999b). Other products such as fluid milk or cream are normally differentiated based on local regulations. Ice cream and ice milk are formulated milk products intended for consumption in the frozen or partially frozen state.

23.2 Raw Milk for Direct Consumption

Raw milk contains numerous microorganisms that originate from the animal itself. Levels and composition of the initial microbiota are influenced by factors such as the health status of animals including udder disease, fecal contamination of the udder, antimicrobial systems in the milk, and inhibitory substances or veterinary drugs used to treat diseased animals.

Additional secondary contamination originates from the environment (bedding, milking machines, air etc.) as well as from persons handling the milk. Details of these different factors can be found in ICMSF (2005).

16 Milk and dairy products

I Introduction

The purpose of this chapter is to give the reader an appreciation of the complex relationship betwee nicroorganisms and dairy products. Much of the technology of dairy processing is long-established at is reviewed in detail elsewhere (Robinson, 1986a,b; Varnam and Sutherland, 1994; Anon., 1995; Spre-1995). The microbiology of butter is discussed in Chapter 11.

A Definitions

- 1. Milk is the product of normal secretion of the mammary gland of mammals. This chapter focuses milk obtained from cows, with milk obtained from other animals, including sheep, goats, buffaloes horses, mentioned where appropriate.
- 2. Milk for direct consumption is intended for sale directly to the consumer. This includes raw milk a processed milks (fluid milks, market milks). For microbiological considerations, however, any n that has not been heated to pasteurization temperatures is considered raw. Other fluid milks for di consumption are pasteurized, sterilized, ultra-high-temperature (UHT)-treated and include w milk, low-fat milk, skim milk and flavoured milks.
- 3. Cream is the fat-rich part of milk which is separated by skimming or by other techniques. Accord to their fat content (about 10-55%), different types of cream can be differentiated with classification depending on local legislations.
- 4. Concentrated milks are those from which part of the water has been removed, e.g. concentrated r evaporated milk, or sweetened condensed milk. These products may be reconstituted or used in
- 5. Dried dairy products normally contain less than 5% residual moisture and include dried whole skim milk or non-fat dry milk (NFDM), cream, buttermilk, cheese and whey. Low-heat and in tized milks are special forms of dried milks.
- 6. Cultured or fermented milks are milk products intended for consumption after fermentation by
- 7. Cheese is the product of casein coagulation in the milk, followed by separation and removal whey from the curd. Apart from certain fresh cheese, curd is then textured, salted, formed, p and finally ripened. Cheese varieties included fresh, soft, semisoft, hard as well as blended chee 8. Ice cream and ice milk are formulated milk products intended for consumption in the fro-
- partially frozen state.
- B Importance of microorganisms and other important properties

Milk as synthesized in the milk-producing glands of various mammals is designed by nature specifically the nutritional needs of the suckling newborn. Average cow milk is composed of a a 4.6% lactoset 3.25% protein, and 0.65% mineral substances (Wa

(CMS)

- Diversity In Dairy Products/Manufacturing
- Microbial ecology of milk and dairy products
- Dairy product-associated foodborne outbreaks
- On-farm controls
- Microbiological criteria by product type

Epidemiology - Milk and dairy products

- Milk and milk products are not the highest contributor to foodborne illness.
- The major cause of milk-borne disease is consumption of raw milk/raw milk products, cheeses and recontaminated processed milk and mixed dairy products such as cream fillings

Reducing the concentration/prevalence of intrinsic contamination

Minimise the chance of contamination of reconstituted formula during preparation

Upstream milk supply practices are vital for Dairy product safety and quality

of the International Dairy Federation 351/2000 Safety in **Dairy Products**

Canadian Quality Milk On-Farm Food Safety Program

Best Management Practices Critical Control Points Standard Operating Procedures Corrective Actions

Reference Manual

Pathogens in milk and dairy products

- Raw milk numerous
- Cheeses L. monocytogenes, Shiga-toxin E.Coli (STEC),
 S. aureus, Salmonella and Campylobacter
- Raw milk butter and cream L. monocytogenes, STEC, S. aureus
- Milk powders Salmonella, S. aureus, B. cereus, Cronobacter spp.
- In endemic areas, raw milk dairy products Brucella spp. and Mycobacterium bovis
- Potential hazards Coxiella burnetii and Mycobacterium paratuberculosis

Key pathogenic bacteria associated with dairy foods: On-farm ecology and products associated with foodborne pathogen transmission

Edward M. Fox ^{a, *}, ^{*} Yujun Jiang ^b, Kari S. Gobius ^a *CSB0 Agrivature and Foot, Wenther, W. 2020, Australia *By Lad (2019) Science, Ministry of Bactano, College of Food Science and Engineering, Northeast Agricultural University, Harbin, 150020, Chin

Dairy-Related Illness/hospitalisations from US Outbreaks 2009-2014

		Outbrea	ks associated with	milk and c	heese consum	ption, N =	87	
Pathogen	Pasteurized				Unpasteurized			
	Outbreaks	Illnesses	Hospitalizations		Outbreaks	Illnesses	Hospitalizations	
STEC	0	0	0		14	99	42	
Salmonella spp.	0	0	0		8	83	29	
Listeria monocytogenes	10	100	87		1	1	1	
Campylobacter spp	1	2	0		53	465	56	
Overall	11	102	87		76	648	128	

Listeriosis Outbreaks Linked to Cheese

Food	Year	# ill	# Hospitalized	# Deaths	Location
Soft cheese (Karoun)	2010/2015	30	28	3 (1 fetal)	USA (10 states)
Fresh curds/Hispanic style	2014	5	4	1	USA (4 states)
soft cheese					
Soft and semi-soft cheese	2013	6	6	1 (1fetal)	USA (5 states)
(Crave Brothers)					
Hispanic style soft cheese	2013	8	7	1	USA (2 states)
(Roos Foods)					
Jindi cheese	2013	25		3 (1 fetal)	Australia
Ricotta Salata cheese	2012	23	21	5	USA (14 states)
Latin-style fresh cheese	2012	2 (1 pregnant) and 1 baby			Spain
Blue-veined cheese	2011	15	1	1	USA
(unpasteurized)					
Hard cheese	2011	12	12		Belgium
Fresh cheese	2010/2011	40		13	Portugal
Camembert cheese	2010	17		3	Norway

Dairy Listeriosis Outbreaks - Causes

- Cross-contamination of cheeses at retail and consumer home an important control point
- Two of the cheese-related Listeria outbreaks identified knives and cutting boards as potential sources of contamination
- Risks of operating a dairy plant in a farm environment; potential for transfer of *Lm* from the farm environment to the plant via shared toilet facilities
- □ Failure to protect water sources from wild birds; multibarrier failure in the water disinfection system
- Serving high-risk cheeses to patients in hospitals

Salmonella, S. aureus, Cronobacter in heat-treated Dairy products

Powdered Infant Formula as a Source of Salmonella Infection in Infants

Sarah M. Cahill,¹ I. Kaye Wachsmuth,² Maria de Lourdes Costarrica,¹ and Peter Karim Ben Embarek³

¹Food and Agriculture Organization of the United Nations, Rome, Italy, ²International Public Health Consultant, Private Practice, DeLand, Florida; and ³World Health Organization, Geneva, Switzerland

Powdered infant formula is not sterile and may be intrinsically contaminated with pathogens, such as *Salmonella enterica*, that can cause serious illness in infants. In recent years, at least 6 outbreaks of *Salmonella* infection in infants that have been linked to the consumption of powdered infant formula have been reported. Many of these outbreaks were identified because the *Salmonella* strains were unique in some way (e.g., a rare serotype) and a well-established *Salmonella* surveillance network, supported by laboratories capable of serotyping isolates, was in place. Another common feature of the outbreaks was the low level of salmonella detected in the implicated formula (salmonella may be missed in routine testing). These outbreaks likely represent only a small proportion of the actual number of *Salmonella* infections in infants that have been linked to powdered infant formula. Managing this problem requires a multidimensional approach in which manufacturers, regulators, and caregivers to infants can all play a role.

Clinical Infect. Dis. 46: 2008

Milk/Milk Powder and S. aureus

(Statistics of Food Poisoning in Japan, Ministry of Health, Labour and Welfare)

Salmonella in powdered milk products

Table 2. Salmonellosis outbreaks during the period 1985-2005 that have been linked to powdered infant formula (PIF).

<i>Salmonella</i> serotype	No. of infants affected	Vehicle	Location	Year	Organism isolated from PIF	PIF implicated by epidemiologic study	Reference
Ealing	48	PIF	United Kingdom	1985	Yes	Yes	[19]
Tennessee	≥3	PIF	United States, Canada	1993	Yes	Yes	[20]
Virchow	≥48	PIF	Spain	1996	Yes	Yes	[21]
Anatum	17	PIF	United Kingdom, France	1996–1997	No	Yes	[22]
London	30	PIF	Korea	2000	Yes (open package only)	Yes	[23]
Agona	141	PIF	France	2004–2005	Yes	Yes	[24]
Total	≥287						

Cahill et al., 2008, Clinical Infectious Disease

Salmonella outbreak in infant formula - Lactalis (France) 2017-18

2017/18 - 40 babies ill in different Countries

Factory had same S. *agona* strain In factory for 12 years

Whole Genome Sequencing proved link to all isolates including clinical (baby) isolates

Factory focus on end point testing?

French Authorities will now inspect all Dairy powder/IF factories in France Uality

Cronobacter outbreaks linked to PIF Korean J. Food Sci. An. 2018 April 38(2):376~390

Code> CAC/	k Alim RCP 2	entari 1-197	us 79	
	n	С	m	Μ
Aerobic mesophilic counts	5	2	10 ³	104
Coliforms	5	1	<3	20
Salmonella	60	0	0	
Co Ci	odex A AC/RC	Aliment P 66-	tarius 2008	
	n	c	m	M
Aerobic mesophilic counts	5 5	2	500	5000
Enterobacteriaceae (10g)) 10	2	0	
E. sakazakii (10g)	30	0	0	
Salmonella (25g)	60	0	0	

Location	Year	Cease Death	References
St. Albant, England	1955	2/2	Urmonyi and Franklin, 1961
Downark	1965	1/Nenc	Joker et al., 1965
Macon, GA, USA	1979	1/Not montioned	Monroe and Tift, 1979
Indianapolis, IN, USA	1951	1/Nenc	Eleiman et al., 1951
The Netherlands	1982	\$/Nonc	Muytjons et al., 1983; Muytjons, 1985; Muytjons and Kolloo, 1990
Athens, Greece	1985	1/Not montioned	Amoni et al., 1985
Reykjavik, looland	1996-1997	20	Bioring et al., 1999; Clark et al., 1990
Sorton, MA, and New Orleans, LA, USA	1957	2 Not montioned	Willie and Robinson, 1955
Monghis, TN, USA	1955	4 Not montored	Simmons et al., 1959
Saltmore, MD, USA	1990	1/Net montioned	NICROBIOLOGICAL RISK ASSESSMENT SERIES
Cincinnati, OR, USA	1990	1/Not montored	
Irraci	1993, 1995, 1997,1995	4 Not montioned	
Bortos, MA, USA	1995/1996	5/4	
Belgium	1995	12/2	Enterobacter sakazakii
Winston Salem, NC, USA	2000	1/Nonc	in powdered infant formula
Irraci	1997-2000	S/Nenc	
Enerville, TN, USA	2001	10/1	-
Tennettee, USA	2002	1/1	0
Witcondin, USA	2002	1/Not montioned	
USA	2005	6 Not montored	CDC ut
France	2004	2/Not montioned	Colgan
USA	2004	2/Not mentioned	CDC ==
USA	2005	2/Not montioned	CDC and
Carada	2007	2/Not montioned	
New Mexico, USA	2005	2/Nonc	CDC, 2009
Querctare, Mexico	2010	2/Nonc	Flores et al., 2011
Florida, Illinois, Missouri, and Oklahoma, USA	2011	62	CDC, 2012
Not montioned	2012	1/Nonc	Broge and Los, 5013
Otra	2017	20	Cul et al., 2017

ICMSF - Book 8 Microbiological criteria

)ualitv

ICMSF - Book 8 Processed Liquid Milk

Table 23.2 Testing of processed fluid milk products for microbiological safety and quality

Relative importance		Useful testing
Critical in- gredients	Low	Testing for vegetative pathogens or indicators is only useful to verify that ingredients have been manufactured applying GHP.
	Medium	For sterilized or UHT products, testing for mesophilic and or thermophilic spore formers is useful for critical ingredients and in particular if the heat treatments applied are at the lower end of the scale. Typical industry standards are $10-10^2$ CFU/g.
In-process	Low	Routine in-process testing is not recommended. It is important for trouble- shooting to identify potential sources of contamination. Such investigative sampling should include critical steps of the processing line such as the plate heat exchangers, fillers, and intermediate storage tanks.
Processing environment	Low	Routine testing of the environment for vegetative and spore forming pa- thogens or spoilage microorganisms is not recommended. It can, however, be useful for trouble-shooting to identify potential sources of contamina- tion (e.g., filter units, areas of the filling chamber or the fillers themselves).
Shelf life	Medium	For refrigerated products with extended shelf life (>17 days), shelf life testing may be useful to identify potential issues (see text)

ICMSF - Book 8 Processed Liquid Milk

Table 23.2 Testing o	f processed flui	d milk produ	icts for micro	biological	safety and q	uality	
<u>.</u>	•	•	· ·				-
Relative importance	Useful testing	:	: :			:	
End product Low/	Low for pas	teurized pr	oducts, hig	h for steril	ized or UF	IT products	s, for
High	which testin	g and trend	i analyses to	o assess th	e performa	ance of the	line an

detection of major deviations is recommended.

		Analytical method		Sampling plat & limits/mL*			
Product	Microorganism	a	Case	n	с	m	М
Pasteurized milk ^b	Enterobacteriaceae	ISO 21528	5	5	2	<1	5
Sterilized or UHT prod- ucts	Presence/absence tests for spoilage microorganisms	/absence Incubate at 30 and Fixed numb spoilage 55°C (if suitable) samples up for 10-14 and 5-7 of batches of days, respectively. on product Destructive and text). non-destructive)% ling æ

Some Regulatory Values APC?

Country	Micro	n	С	m	Μ
Aus	E. coli	5	1	1	10
Can	Coliform	5	2	1	10
EU	Eb	5	2	1	5
Ind	Coliform	5	0	Abs	/0.1ml

ICMSF -Book 8 Ices/Ice Cream

	Relative importance	Useful testing
Critical ingredients	High 	It is important to develop good supplier relationships for critical dry mix ingredients to ensure their safety. Requirements for such ingredients should be equivalent to those for finished products to ensure compliance. Depending on the confidence level of the supplier testing is performed either for acceptance or as monitoring.
In-process	High	Routine in-process testing is recommended at critical steps of the process. Testing for Enterobacteriaceae provides important information on the hygiene status of processing lines and levels exceeding those established for the finished product should trigger testing for <i>Salmonella</i> .
Processing environment	Low	In cases where regulatory requirements exist, testing of environmental samples for L. mono (absence in the samples taken) is recommended. <i>Listeria</i> spp. can be used as a hygiene indicator – while absence is certainly the target, low levels up 10 CFU/g may be acceptable, but need to be interpreted according to observed trends over time. Testing for Enterobacteriaceae is not recommended with the exception of areas maintained dry (suggested target values: 10 ² –10 ³ CFU/g).

ICMSF - Book 8 Ices/Ice Cream

	Relative importance	Useful testing						
End product	High	Testing for Enterobacteriaceae lines. High levels may then trigg be limited to verification, as long	esting for Enterobacteriaceae provides important information on the hygiene status of processing nes. High levels may then trigger investigative sampling for pathogens. Testing for <i>Salmonella</i> can e limited to verification, as long as in-process and environmental results show no deviations.					
			Sampling plan & limits/g/*25g					
		Microorganism	Case	n	с	m .	M	
	High	Enterobacteriaceae	2	5	2	10	100	
	Low	Salmonella	11	10	0	0	-	

Some	Regulatory
Values	5

Country	Micro	n	С	m	Μ
EU	Eb APC Sal & L.mono	5 5 5	1 2 0	10 10 ⁵ Abs & <100/g	100 5x10⁵
Ind	Coliform APC Sal & L. mono	5 5 5	3 3 0	10 10 ⁵ Abs(25g) & Abs/g)	100 2x10 ⁵

ICMSF - Book 8 Dairy Powders/Powdered Infant Formula

		Useful testing						
Critical ingredients	High	Develop good supplier relationships for critical dry mix ingredients Requirements for such ingredients need to be equivalent to those for finished products to ensure its compliance.						
In-process	High	 Test product residues at critical operations and intermediate product for Salmonella and Enterobacteriaceae. Typical guidance levels: Enterobacteriaceae – same requirements as finished products Salmonella – absent in any of the samples 						
Processing environment	High	Test for <i>Salmonella</i> and Enterobacteriaceae in relevant areas. Typical guidance levels: • Enterobacteriaceae – 100 CFU/g or sample • <i>Salmonella</i> – absent						
End product	High	Test for indicators for on-going process control and trend analysis. If APC's are consistently much lower, then internal limits should be adjusted accordingly.					Ð	
				Sampling plan & limits/g				
	Product	Microorganism	Case	n	с	m	M	
High	Dry milk powders	АРС	2	5	2	104	10 ⁵	
High	Dry milk powders	Enterobacteriaceae	5	5	2	<3	9.8	
							Nes	

Example: Dried Dairy Products (continued)

.

	Relative importance	Useful testing
End product	Low to High	When in-process and environmental results show negative results, testing of smaller numbers of samples for verification is usually sufficient. However, testing end products for Salmonella for lot acceptance is relevant when environmental data indicate potential for contamination or when effectiveness of control measures seems impaired (e.g. construction, wet cleaning).

Country	Micro	n	C	m	Μ
EU	APC Eb Salmonella S. aureus	5 5 5 5	2 0 0 2	1x10 ⁴ 10 Abs (25g ⁾ 10	5x10 ⁴ 100
Ind (Process ed)	APC Coliform Sal S. aureus	5 5 5 5	2 2 0 2	2.5x10 ⁴ 10 Abs(25g) 10	5x10⁴ 50 100

ICMSF - Book 8 Powdered Infant Formula

Microbial Sampling In Dairy Products: Summary

- Product Testing has severe limitations Cannot test safety "into" products
- Focus on HACCP principles and associated PreRequisite Programmes (PRPs) (Zoning, sanitation, supplier management, training, etc)
- Focus on process control preferred
- Apply good Environmental monitoring at line and environmental samples
- Apply proper Root-cause analysis; eliminate biofilms/harbourage sites/poor hygienic design

FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA

Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India

QUESTIONS

John Donaghy ICMSF India 2018

Preventing & Controlling L. mono in production environment

Seek and Destroy Approach

Environmental Monitoring Programs

(c.f. Pathogen & hygiene monitoring programmes)

- Personnel Practices
- Plant Design
- Equipment
- Cleaning/Sanitation
- Raw materials & ingredients

- Process control based on formulation
- Listericidal process control
- Storage Practices
- Time/Temperature controls

ICMSF - Book 8 Cheeses

	Relative importance	Useful testing
Critical ingredients	High	Raw milk cheese (RMC) only: Good supplier relationship is important, targeting the absence of <i>Salmonella</i> , STEC and <i>L. monocytogenes</i> (Lm) or other pathogens that may survive cheese making.
In-process	High High to low	Monitor pH during acidification of the curd to detect slow fermentation. In-process testing for <i>S. aureus</i> may be relevant if acidification does not proceed as anticipated. For cheeses that support the growth of Lm and for RMC, testing residues and product contact surfaces may be important to verify the effectiveness of the preventive measures implemented. Pathogens of concern vary by cheese type.
Duccesian		Typical guidance levels: Lm & Salmonella – absent
environment	High to low	the processing environment may be useful to assess the effectiveness of control measures taken. If appropriate, typical guidance levels are: <i>Lm & Salmonella</i> – absent
Shelf-life	Low	Testing may be conducted to determine the fate of pathogens during ripening and storage of cheese. Routine testing, however, is not recommended.

Quality

ICMSF - Book 8 Cheeses

-

	Relative importance	Useful testing
End product	High	Testing for <i>E. coli</i> or <i>S. aureus</i> is useful to verify process control and hygiene conditions for certain cheese types. Upper limits (M) may vary de-pending on the extent of heat-treatment, but high levels may trigger investigative sampling for pathogens, including STEC, or staphylococcal enterotoxins.

Some Regulatory Values

Country	Micro	n	С	m	М
Health Canada (Unpast)	E. coli S. aureus Sal & L.mono	5 5 5	2 2 0	100 100 S- Abs & L.mono <100/g(or abs/25g)	1000 1000
Ind (Process ed)	Coliform APC Sal & L. mono E. coli	5 5 5 5	0 2 0 0	10 2.5x10 ⁴ Abs(25g) & Abs(25g) Abs/g	100 5x10 ⁴

ICMSF - Book 8 Cheeses

Relative importan	ce			Sampling p	lan	& lin	nits/g	•~•
	Product	Microorganism	Case	n	С	m	Μ	
High	Fresh cheese	S. aureus	8	5	1	10	10 ²	
High	Raw milk cheese	S. aureus	7	5	2	10 ³	104	
Low	Cheese from mildly heated milk or ripened	S. aureus	7	5	2	10 ²	104	
Medium	Cheese made from pasteurized milk	E. coli	4	5	3	10	10 ²	
Low	Cheese: No growth	L. monocytogenes	NA	5 Sampl limi	0 ing pla its/25	10 ² an &	-	
				n	С	m	Μ	
High	Cheese: Growth supported	L. monocytogenes	NA	5	0	0	-	
Medium or low	Cheese from raw or mildly heat-treated milk	Salmonella	10	5	0	0	-	Quality
							Nestle	Quality

Location	Cases	Comments	Reference
Iceland	3; 1 death	2 normal term infants; 1 Down's	Biering et al., 1989
Tennessee	4; 3 sepsis, 1 bloody diarrhea	Cs; 8 cfu/100g	Simmons et al., 1989
Belgium	12 (all birth weights < 2000g)	6/12 with NEC positive for Cs	Van Acker et al., 2001
Tennessee	9	1 confirmed, 2 suspect, 6 colonized	Himelright et al., 2001
Israel	2	Cs isolated from stools of 3 asymptomatic infants	Bar-Oz et al., 2001

