





# Microbiological Testing: Vegetables/Produce

#### Michelle Danyluk, PhD

Associate Professor and Extension Specialist

University of Florida, USA

Lucia Anelich, PhD

Managing Director

Anelich Consulting, South Africa

Robert Buchanan, PhD Professor University of Maryland, USA





#### What is Produce?

- Foods, other than grains, nuts, and some legumes, derived from plants
  - Vegetables
  - Fruits
  - Certain fungi
  - Sprouted seeds



- Important part of human diet as source of nutrients, fibre and vitamins
- Consumption of *produce and their products* increased significantly in many countries in recent years







#### Outbreaks Associated with Produce - US









| Food Category                   | Outbreaks | Illnesses |
|---------------------------------|-----------|-----------|
| Aquatic Animal                  | 344       | 2,288     |
| Land Animal                     | 565       | 13,709    |
| Dairy                           | 136       | 1,639     |
| Eggs                            | 36        | 2,470     |
| Beef                            | 106       | 1,934     |
| Chicken                         | 136       | 3,114     |
| Plant                           | 334       | 9,746     |
| Sprouts                         | 21        | 766       |
| Root and underground vegetables | 20        | 383       |
| Seeded Vegetables               | 44        | 2,572     |
| Herbs                           | 7         | 476       |
| Vegetable row crops             | 81        | 2,420     |
| Fruits                          | 78        | 2,420     |

Surveillance of Foodborne Disease – US 2009-15

Dewy-Mattia, D. et al., 2018 Surveill Summ 2018; 67:1-11



Ministry of Health and Family Welfare, Government of India





# Top 5 pathogen-food category pairs resulting in outbreak-associated illnesses – US 2009-15

| Etiology      | Food Category     | No. Outbreaks | No. Illnesses | No. Hospitalizations | No. Deaths |
|---------------|-------------------|---------------|---------------|----------------------|------------|
| Salmonella    | Eggs              | 31            | 2,422         | 41                   | 1          |
| Salmonella    | Seeded Vegetables | 25            | 2,203         | 419                  | 7          |
| Salmonella    | Chicken           | 49            | 1,941         | 372                  | 0          |
| Salmonella    | Pork              | 43            | 1,539         | 206                  | 3          |
| Campylobacter | Dairy             | 60            | 917           | 51                   | 1          |

Dewy-Mattia, D. et al., 2018 Surveill Summ 2018; 67:1-11



Ministry of Health and Family Welfare, Government of India





# Top 5 pathogen-food category pairs resulting in outbreak-associated hospitalizations – US 2009-15

| Etiology         | Food Category     | No. Outbreaks | No. Illnesses | No. Hospitalizations | No. Deaths |
|------------------|-------------------|---------------|---------------|----------------------|------------|
| Salmonella       | Seeded vegetables | 25            | 2,203         | 419                  | 7          |
| Salmonella       | Chicken           | 49            | 1,941         | 372                  | 0          |
| Salmonella       | Fruits            | 24            | 838           | 227                  | 6          |
| Salmonella       | Pork              | 43            | 1,539         | 206                  | 3          |
| L. monocytogenes | Fruits            | 3             | 184           | 179                  | 41         |

Dewy-Mattia, D. et al., 2018 Surveill Summ 2018; 67:1-11







# Top 5 pathogen-food category pairs resulting in outbreak-associated deaths – US 2009-15

| Etiology         | Food Category       | No. Outbreaks | No. Illnesses | No. Hospitalizations | No. Deaths |
|------------------|---------------------|---------------|---------------|----------------------|------------|
| L. monocytogenes | Fruits              | 3             | 184           | 179                  | 41         |
| L. monocytogenes | Dairy               | 14            | 106           | 70                   | 14         |
| Salmonella       | Seeded vegetables   | 25            | 2,2-3         | 419                  | 7          |
| Salmonella       | Fruits              | 24            | 828           | 227                  | 6          |
| L. monocytogenes | Vegetable row crops | 2             | 29            | 29                   | 6          |

Dewy-Mattia, D. et al., 2018 Surveill Summ 2018; 67:1-11







#### Notable Produce Outbreaks

- USA August October 2011
- Whole Cantaloupe
- Listeria monocytogenes
  - States 28
  - Case Count 147
  - Hospitalizations 143
  - Deaths 33
- At the time, most deadly outbreak in US history
- First Lm outbreak associated with whole produce
- Outbreaks strains found in packinghouse, not field





CDC Final Update, 2012

\*Pictures from Online - USA Today







#### Notable Produce Outbreaks

- EU 2013
- Mixed berry products
- Hepatitis A
  - 12 European countries
  - At least 1,444 cases
  - No Deaths
- Two suspected origins
  - Single point source
  - High risk practice during freezing







#### Notable Produce Outbreaks

- US March-June, 2018
- Romaine Lettuce
- *E. coli* O157:H7
  - States 36 (and Canada)
  - Case Count 210
  - Hospitalizations 96
  - HUS 27
  - Deaths 5
- Traced back to a growing region, not an individual farm
- Strain found in canal waters and a nearby feedlot









#### Microorganisms of Concern

- Bacteria
  - Salmonella, toxigenic E. coli (EHEC), Shigella, Listeria monocytogenes, Yersinia pseudotuberculosis, Clostridium botulinum (low acid juices)
- Viruses
  - Norovirus, Hepatitis A
- Protozoa/Parasites
  - Giardia lamblia, Cryptosporidium parvum, Cyclospora cayetanensis, Toxoplasma gondii, Fasciola hepatica













#### International Documents

### CODEX ALIMENTARIUS

INTERNATIONAL FOOD STANDARDS





E-mail: codex@fao.org - www.codexalimentarius.org

#### CODE OF HYGIENIC PRACTICE FOR FRESH FRUITS AND VEGETABLES

CXC 53-2003

Adopted in 2003. Revised in: 2010 (new Annex III for fresh leafy vegetables), 2012 (new Annex IV for Melons), 2013 (new Annex V for Berries), 2017.

- Annex I RTE fresh pre-cut fruits and vegetables
- Annex IV Melons
- Annex V Berries

- Annex II Sprout production
- Annex III Fresh Leafy Vegetables









# Useful Testing for Safety Management

All Values Are Scientific Advice Developed By The ICMSF And Have No "Official" Status

- Chapter 12 Vegetables and Vegetable Products pg 147
- Chapter 13 Fruits and Fruit Products pg 177





Types of Microbiological Testing

- Routine
  - lot-by-lot, assess safety of lots, end-product or in process
- Verification
  - occasional, measure continuing effectiveness of controls
- Environmental
  - assess effectiveness of GAP and GHP program and potential for cross contamination
- Investigational
  - in response to failure or deviation, identify root cause
- Shelf-life
  - Validation of shelf-life and impact of factors affecting it; profile microbiological changes occurring in product during shelf-life of individual lots











#### Products Covered Vegetables and Vegetable

Products

- Fresh and Fresh-cut
- Cooked
- Frozen
- Canned
- Dried
- Fermented and Acidified
- Sprouted Seeds
- Mushrooms

#### **Fruits and Fruit Products**

- Fresh Whole
- Fresh-Cut
- Frozen
- Canned
- Dried
- Tomatoes and tomato products
- Fruit Preserves
- \* Primary Production covered in both









- "Vegetables", "Fruits", and "Produce" cover a huge range of foods and food products that vary from region to region
- All recommendations provided must be adapted to the specific fruits and vegetables being considered to account for differences in cultivation techniques, distribution and processing, end use, etc.













#### Primary Production









#### **Contamination Sources**









### Types of Microbiological Testing

- Extent of contamination can be strongly influenced by primary production practices and conditions
  - Good Agricultural Practices
- Verification testing may be beneficial for higher-risk fresh produce (e.g., leafy greens, sprouts)
  - Pre-harvest testing
- At primary production a focus is verification of water sources and soil amendments, as well as investigational sampling



![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

#### Evaluating Risk Related to Production Water

Three main impact points for produce safety risks related to production water are:

- 1. Production water source and quality
  - Public water supply, ground water, surface water
  - Testing frequency and sampling location
- 2. Application method
  - Water that does not contact the harvestable portion
  - Water that contacts the harvestable portion of the crop
- 3. Timing of application
  - At planting or close to harvest

![](_page_19_Picture_14.jpeg)

![](_page_19_Picture_15.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

#### Probability of Contamination

![](_page_20_Figure_5.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

#### Method of Irrigation

- Overhead (sprinkler)
  - Higher risk: A direct water application method resulting in contact with produce
- Flood (surface, furrow)
  - May avoid direct contact with produce
  - Consider risk of contact with contaminated soil during harvest or from splash
- Drip (trickle, subsurface, micro, under canopy)
  - Lower risk: Produce generally not in direct contact (except root crops), reduces foliar diseases, improves water use efficiency

![](_page_21_Picture_12.jpeg)

![](_page_21_Picture_13.jpeg)

![](_page_21_Picture_14.jpeg)

![](_page_21_Picture_15.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

#### Agricultural Water

| Use                           | Impor-<br>tance | Hazard or<br>Indicator | Testing method /<br>Analytical Unit | n | С | m                    | Μ               |
|-------------------------------|-----------------|------------------------|-------------------------------------|---|---|----------------------|-----------------|
| Irrigation, RTE               | High            | Escherichia coli       | ISO 9308-1<br>100 ml                | 3 | 1 | 10                   | 10 <sup>2</sup> |
| Irrigation,<br>non-RTE        | Mode-<br>rate   | E. coli                | ISO 9308-1<br>100 ml                | 3 | 1 | 10 <sup>2</sup>      | 10 <sup>3</sup> |
| Pesticides,<br>cleaning, etc. | High            | E. coli                | ISO 9308-1<br>100 ml                | 5 | 0 | Absence in<br>100 ml | NA              |

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

#### Soil Amendments & Food Safety Risks

- Biological soil amendments, especially those that include untreated (raw) manure, pose significant microbial risks
  - This is also true of untreated human waste and improperly treated biosolids
- Synthetic (chemical) soil amendments can also impact food safety, if not prepared and applied properly
- Risks can be reduced by:
  - Selection of crop
  - Treatment
  - Application Timing
  - Application Method
  - Handling

![](_page_23_Picture_14.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

![](_page_24_Picture_3.jpeg)

#### Composted Organic Soil Amendments (1)

| Intended Use                                  | Relative<br>Importance | Hazard or<br>Indicator | Testing<br>Method/ Analytical<br>Unit | n | С | m                     | Μ                     |
|-----------------------------------------------|------------------------|------------------------|---------------------------------------|---|---|-----------------------|-----------------------|
| Composted manures<br>/ Vegetables likely to   | High                   | Escherichia coli       | ISO 16649-2                           | 5 | 2 | 10 <sup>2</sup> per g | 10⁴ per g             |
| be eaten raw                                  |                        | EHEC                   | ISO 16654<br>10g                      | 5 | 0 | Absence in<br>10g     | NA                    |
|                                               |                        | Salmonella             | ISO 6579<br>10g                       | 5 | 0 | Absence in<br>10g     | NA                    |
| Pasteurized manures<br>/ Vegetables likely to | Moderate               | E. coli                | ISO 16649-2                           | 5 | 2 | 10 <sup>2</sup> per g | 10 <sup>4</sup> per g |
| be eaten raw                                  |                        | EHEC                   | ISO 16654<br>10g                      | 5 | 0 | Absence in<br>10 g    | NA                    |
|                                               |                        | Salmonella             | ISO 6579<br>10g                       | 5 | 0 | Absence in<br>10 g    | NA                    |

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

#### Composted Organic Soil Amendments (2)

| Intended Use          | Relative           | Hazard or Indicator     | Testing                 | n      | С     | m                     | Μ                     |
|-----------------------|--------------------|-------------------------|-------------------------|--------|-------|-----------------------|-----------------------|
|                       | Importance         |                         | wiethod/ Analytical     |        |       |                       |                       |
|                       |                    |                         | Unit                    |        |       |                       |                       |
|                       |                    |                         |                         |        |       |                       |                       |
| Composted manures /   | Low                | E. coli                 | ISO 16649-2             | 5      | 2     | 10 <sup>3</sup> per g | 10 <sup>5</sup> per g |
| Vegetables not likely |                    |                         |                         |        |       |                       |                       |
| to be eaten raw       |                    | ЕНЕС                    | ISO 1665/               | 5      | 0     | Absence in            | ΝΔ                    |
|                       |                    |                         | 100 10004               |        |       |                       |                       |
|                       |                    |                         | 10g                     |        |       | 10 g                  |                       |
|                       |                    | Salmonella              | ISO 6579                | 5      | 0     | Absence in            | NA                    |
|                       |                    |                         | 10g                     |        |       | 10 g                  |                       |
| Pasteurized manures / | Routine microbiolo | ogical testing not reco | ommended . Periodic tes | ting t | o ver | ify effectivene       | ess of                |
| Vegetables not likely | process may be be  | neficial.               |                         |        |       |                       |                       |
| to be eaten raw       |                    |                         |                         |        |       |                       |                       |
|                       |                    |                         |                         |        |       |                       |                       |
|                       |                    |                         |                         |        |       |                       |                       |

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_2.jpeg)

- Generally capable of supporting growth of bacteria and fungi
  - pH=4.5 to 7.0, aw > 0.98
- Allow survival of viruses and protozoa
- Minimal processing
- Cut surfaces and other routes of entry
- Often no cooking
- Temperatures and time for quality may be in range for microbial growth
- Enterobacteriaceae, coliforms, and fecal coliforms are part of the normal flora found on fresh produce, and these groups do not reflect the sanitary status of raw produce.

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

| Relativ                   | /e       |                                                                                                                                                  |
|---------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Imp                       | portance | Useful Testing                                                                                                                                   |
| Critical Ingredients      | Low      | Rely on verification that GAPS were followed and verification testing at primary production and harvest                                          |
| In process                | High     | Non-microbial testing of antimicrobial in wash water, flume water, etc for control of cross-contamination                                        |
| Processing<br>Environment | Medium   | Periodic testing of food contact surfaces and processing environments to verify GMP and sanitization protocols                                   |
| Shelf Life                | Low      | Validated through microbiological testing before initiation of a new product line and revalidated after any major change in process technologies |

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

| Rela<br>Importa                                                                                                                                                                                                                                                              | tive<br>nce | Useful Testing         |                     |               |                          |   |                                    |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|---------------------|---------------|--------------------------|---|------------------------------------|-------------------|
| EndRoutine microbiological testing is not recommended. Periodic testing for specific indic<br>useful for verifying process control and conducting trend analysis. Test for specific pat<br>when other data indicate high potential for contamination or process failure.Veg) |             |                        |                     |               |                          |   | cific indicators<br>ecific pathoge | may be<br>ns only |
|                                                                                                                                                                                                                                                                              |             | Microorganism          | Testing Method /    | Case          | Sampling Plan and Limits |   |                                    |                   |
|                                                                                                                                                                                                                                                                              |             | Analytical unit        |                     | n             | С                        | m | Μ                                  |                   |
|                                                                                                                                                                                                                                                                              | Medium      | E. coli                | ISO 7251            | 6             | 5                        | 1 | 10/g                               | 100/g             |
|                                                                                                                                                                                                                                                                              | Low         | Salmonella             | ISO 6579<br>25 g    | 12            | 20                       | 0 | Absence in<br>25 g                 | NA                |
|                                                                                                                                                                                                                                                                              | Low         | EHEC                   | ISO 16654<br>25 g   | 15            | 60                       | 0 | Absence in 25 g                    | NA                |
|                                                                                                                                                                                                                                                                              | Low         | Listeria monocytogenes | ISO 11290-1<br>25 g | NA<br>(Codex) | 5                        | 0 | Absence in<br>25 g                 | NA                |

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

| Relati<br>Importar                    | ve<br>ice | Useful Testing                                                                                                                       |                  |      |      |         |               |          |
|---------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|------|------|---------|---------------|----------|
| End<br>Product                        |           | outine microbiological testing is not recommended. Testing may be warranted when information ndicates a potential for contamination. |                  |      |      |         |               | ormation |
|                                       |           | Microorganism                                                                                                                        | Testing Method / | Case | Samp | ling Pl | an and Limits | 5        |
| (Fresh-cut                            |           |                                                                                                                                      | Analytical unit  |      | n    | С       | m             | М        |
| supporting                            | Low       | Salmonella                                                                                                                           | ISO 6579         | 12   | 20   | 0       | 0             | NA       |
| growth                                | Low       | L. monocytogenes                                                                                                                     | ISO 11290-1      | -    | 5    | 0       | 0             | NA       |
| (Fresh-cut<br>RTE fruit<br>no growth) | Low       | L. monocytogenes                                                                                                                     | ISO 11290-2      | -    | 5    | 0       | 0             | NA       |

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

#### Concluding thoughts

- Microbiological testing is integral part of produce safety programs; but must be used appropriately and pragmatically
- No food safety program can rely solely on microbiological testing
  - Prevention through production, preventing cross-contamination during packing and processing
- Most current criteria developed by expert elicitation
  - Vary depending on production practice, commodity, end use
- Enterobacteriaceae, coliforms, and fecal coliforms are part of the normal flora found on fresh produce, and these groups do not reflect the sanitary status of fresh produce.

![](_page_31_Picture_11.jpeg)