

Performance of sampling plans for microbiological criteria

Presented by:

Tom Ross

ICMSF

Tasmanian Institute of Agriculture, University of Tasmania

Overview

- Presence / absence testing
- Binomial distribution and 'simple' evaluation of a sampling scheme
- The importance of variability
- The ICSMF Sampling Plan Spreadsheet
- Using the Spreadsheet to evaluate sampling plan performance

Presence/Absence Testing

Used when acceptable levels of contamination are very low, and cannot be evaluated by colony plating methods

relies on enrichment of 'large' volumes/mass of sample

Presence/Absence Testing

There is no such thing as 'zero' contamination -

only some level of confidence that the contamination is below a certain level.

What do we mean by 'zero tolerance'?

Binomial Distribution

tells us *how many samples* we need to take (and test) to be *appropriately confident* that the *prevalence of a faulty unit* is below the level we consider to be acceptable

for food microbiology testing, we often define acceptability as the absence of a specific pathogen in a *specified amount* of the food

Probability that no contamination is found

P _{defective}	n=1	n=2	n=5
	1- $P_{def} =$	(1- P _{def}) ² =	(1- P _{def}) ⁵ =
0.00	1.00	1.00	1.00
0.01	0.99	0.98	0.95
0.05	0.95	0.90	0.77
0.10	0.90	0.81	0.59
0.15	0.85	0.72	0.44
0.20	0.80	0.64	0.33
0.25	0.75	0.56	0.24
0.30	0.70	0.49	0.17

 $P_{accent} = (1 - P_{defective})^n$

Binomial Distribution

probability theory shows that the probability (P_{accept}) of not detecting contamination in a batch, by testing '*n*' samples, when *p* is the true proportion of contaminated samples is:

$$P_{accept} = (1 - p)^n$$

Binomial Distribution e.g., n= 5, c= 0, m=25g, p = ? $P_{accept} = (1 - p)^n$ $0.05 = (1 - p)^5$ p = 0.45

• *i.e.*, up to 45% of 25 g samples could be contaminated !! or, an 'average' concentration up to 1/56g!

But ...

in practice, the evaluation of the performance of a microbiological sampling plan is harder than this simple calculation *because*

inhomogenous distribution (log-normal) of organisms among lots of food

simple binomial distribution isn't accurate enough

ICMSF Sampling Plan Spreadsheet

- an [®]Excel spreadsheet tool
- can be used to design a sampling plan that detects batches/lots that exceed any specified level of contamination
- variables are:
 - numbers of samples
 - size of samples or sensitivity of detection for each
 - standard deviation of the variability in counts in the lot
 - method sensitivity/specificity

http://www.icmsf.org/publications/software-downloads/

HOME ABOUT US V EVENTS V IN THE NEWS V MEMBERS V PUBLICATIONS VIDEO GALLERY V CONTACTS V LINKS

SOFTWARE DOWNLOADS

Microbiological sampling plans is a tool to explore ICMSF recommendations.

Standard Program

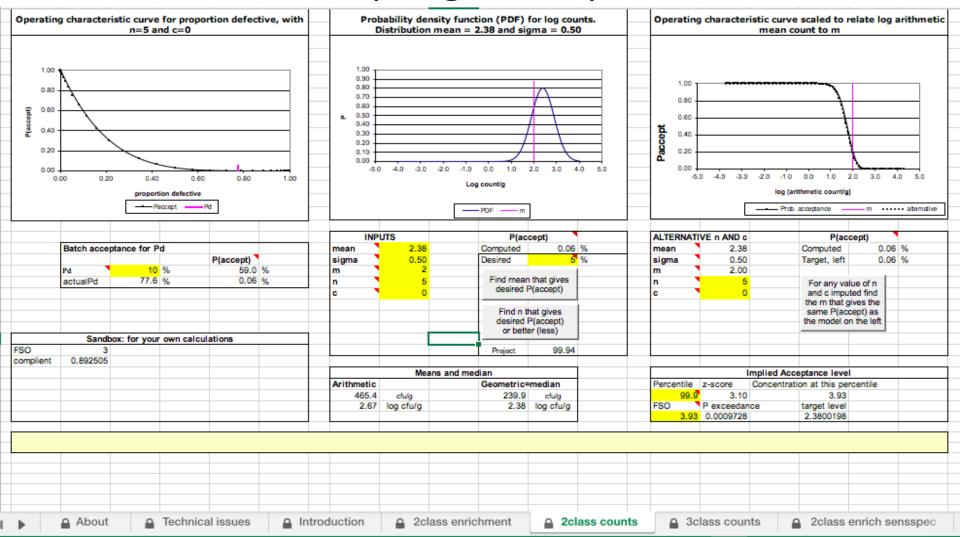
This spreadsheet calculates probabilities of acceptance for materials with different microbial loads and population standard deviations. The microbes are assumed to be lognormally distributed. This is new version 8 (November 2016) including additionally a tab with the effect of specificity and sensitivity.

Download (Spreadsheet 428 KB)

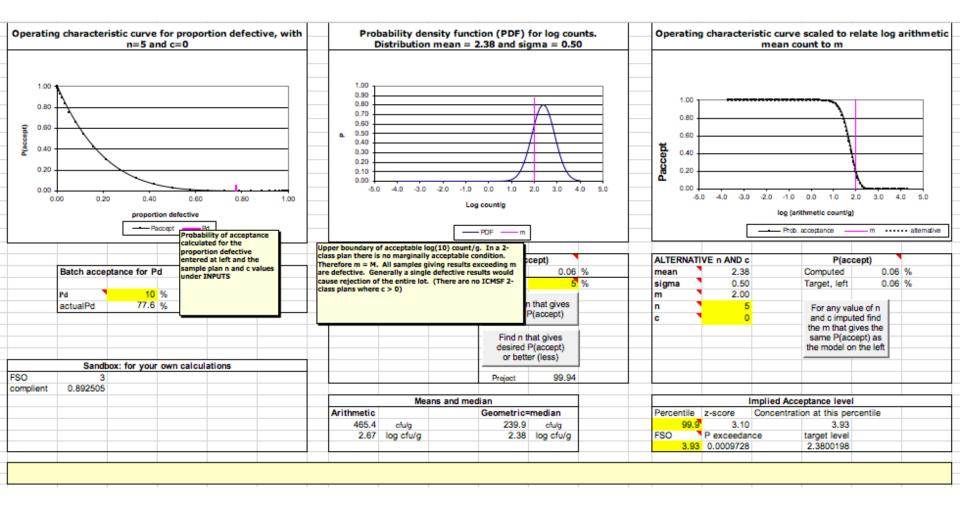
Control Measures Validation (FSO) Tool

A spreadsheet tool to explore the ICMSF Food Safety Objective (FSO) equation to determine the per cent compliance of products from processes that are affected by variability, and which is described in the publication "Validation of control measures in a food chain using the FSO concept (PDF 309KB)".

Download (Spreadsheet 171 KB)


	Α	в	С	D	Е	F	G	н	1	J	к	L	м	N	0	Р	Q
1				ance of sam								_					_
2	This file ca	determine	the periorm	ance or sam	pling plans	ior iour cas	co .										
3	- 2 class pl	ans for enric	chments (pre	esence/abse	nce, detect	tion of the o	rganism with	no count res	sults)		see tab 20	lass enrichm	ent				
4				rmination (lik								lass counts					
5							ompared to I	both m and M	A)		see tab 3c	lass counts					
6				luding effects					1		see tab 2c	lass enrich s	ensspec				
7							in a tabular	form				ableSensSpec					
8																	
9	Descriptio	n of the us	ed variable	S													
10	Data entry	boxes are h	ighlighted in	yellow:		All other c	ells are prote	ected.									
11																	
12	mean	mean of the	e (assumed)) log normal (distribution	describing t	he occurrent	ce of bacteri	al contamin	ants; unit is I	log cfu per g	ram					
13	sigma	standard d	eviation of th	ne same (ass	sumed) log	normal distr	ribution										
14	m	acceptable	level of mic	robiological o	ontaminatio	on, defined a	as an allowat	ole concentra	ation, or for	enrichement	t no contami	ination in a sa	mple of a c	ertain weight	hence equ	als minus log	g(weight)
15	n	number of	samples tes	ted													
16	с	number of	samples wh	ose contamii	nation is alk	wed to exc	eed m (that i	is, test positi	ve for conta	amination), ye	et the lot will	be accepted					
17	amount	sample we	ight, in gram	(only releva	nt for 2-clas	ss enrichem	nent plans)										
18	P(accept)										a) and the sa	ampling plan (n, c and an	nount). This i	s usually se	et at 5%, this	then
19							ability of dete										
20	sensitivity	true positiv	e rate= TP/(TP+FN), (as	sumed to b	e fixed valu	e depending	on the meth	od and not	dependant o	n the conce	ntration of the	organisms)			
	specificity	true negativ	ve rate= TN/	(TN+FP), (a	ssumed to	be fixed val	ue depending	g on the met	hod and no	t dependant (on the conce	entration of th	e organism	s)			
22																	
23							s you to calc	ulate the pro	portion of a	all the sample	es in the lot t	hat would be	expected to	be above a	ny chosen k	ogCFU value	a
24	(i.e., a user	r input). For	that logCFU	, the z-score	is also cal	culated.											
25																	
26																	
27	For a man	ual please	open the fo	llowing wo	rd-file		For an ex	planation o	n arithmet	ic and geom	netric mean	is open the f	ollowing w	ord-file			
28		w	<u> </u>				W B										
29							- "										
30		Docume	ant				Docum	ent									
31			····														
32											-						
33																	
34																	
	•	About		echnical iss	ues	Introdu	uction	2class	enrichme	nt 🔒	2class cou	unts 🔒	3class co	ounts	2class	enrich sen	sspec
			_		_					_							

ICMSF Sampling Plan Spreadsheet



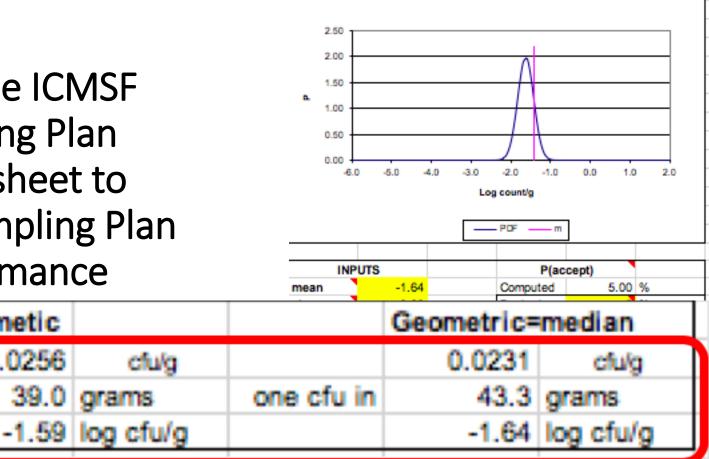
ICMSF Sampling Plan Spreadsheet (help boxes)

ICMSF Sampling Plan Spreadsheet

• can also be used to evaluate the detection limits of an existing sampling plan

Using the ICMSF Sampling Plan Spreadsheet to Assess Sampling Plan Performance

• returning to our earlier example:



one cfu in

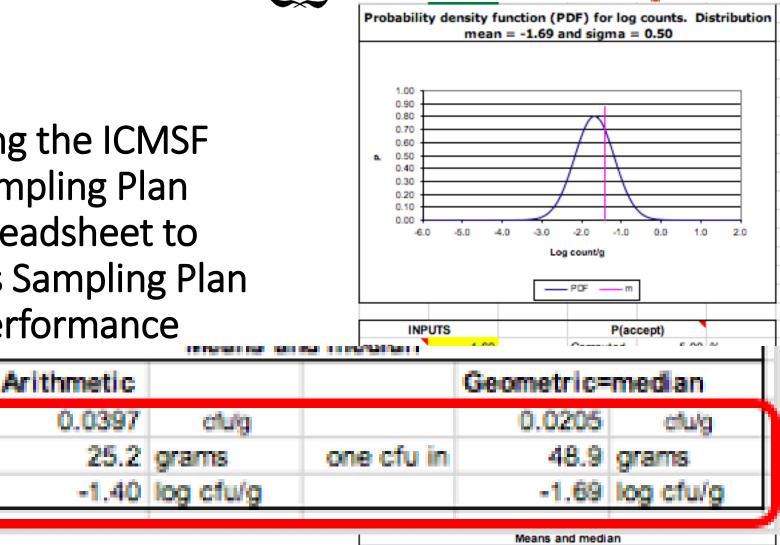
Probability density function (PDF) for log counts. Distribution mean = -1.64 and sigma = 0.20

		Means an	nd median		
	Arithmetic			Geometric=	median
	0.0256	cfu/g		0.0231	cfu/g
one cfu in	39.0	grams	one cfu in	43.3	grams
	-1.59	log cfu/g		-1.64	log cfu/g

Using the ICMSF Sampling Plan Spreadsheet to **Assess Sampling Plan** Performance

Arithmetic

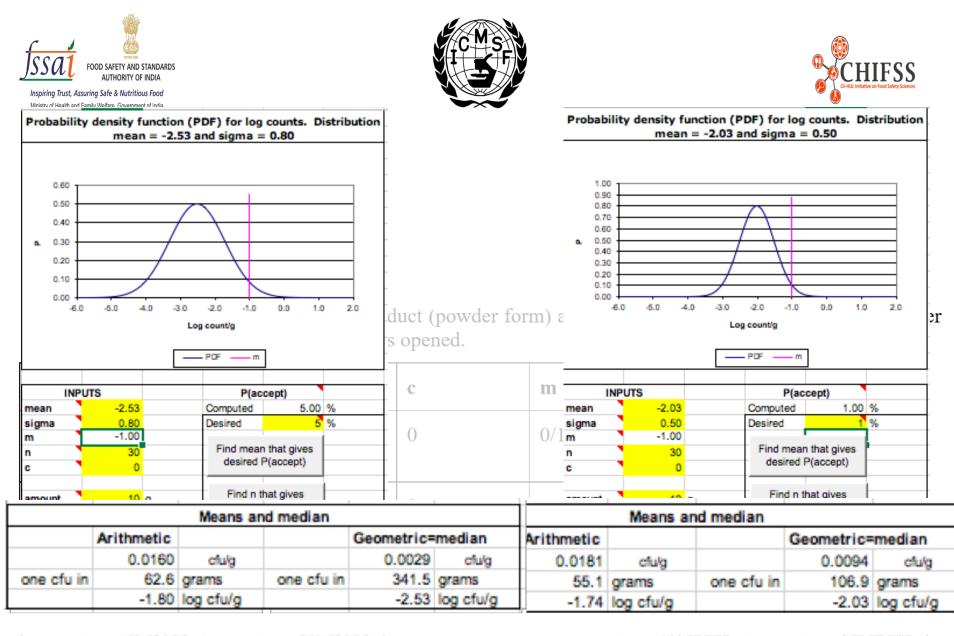
0.0256


39.0

one cfu in

		Means ar	nd median		
	Arithmetic			Geometric=	median
	0.0397	cfulg		0.0205	cfu/g
one cfu in	25.2	grams	one cfu in	48.9	grams
	-1.40	log cfu/g		-1.69	log cfu/g

Using the ICMSF Sampling Plan Spreadsheet to **Assess Sampling Plan** Performance


Criteria for pathogenic microorganisms

These are to be applied to the finished product (powder form) after primary packaging or anytime thereafter up to the point when the primary package is opened.

Microorganisms	n	c	m	Class Plan
Enterobacter sakazakii (Cronobacter species)*	30	0	0/10 g	2
Salmonella ^{**}	60	0	0/25 g	2

Where n = number of samples that must conform to the criteria: c = the maximum allowable number of defective sample units in a 2-class plan. m = a microbiological limit which, in a 2-class plan, separates good quality from defective quality.

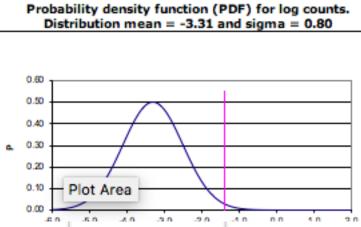
*The mean concentration detected is 1 cfu in 340g (if the assumed standard deviation is 0.8 and probability of detection is 95%) or 1 cfu in 100g (if the assumed standard deviation is 0.5 and probability of detection is 99%)

*The mean concentration detected is 1 cfu in 340g (if the assumed standard deviation is 0.8 and probability of detection is 95%) or 1 cfu in 100g (if the assumed standard deviation is 0.5 and probability of detection is 99%)

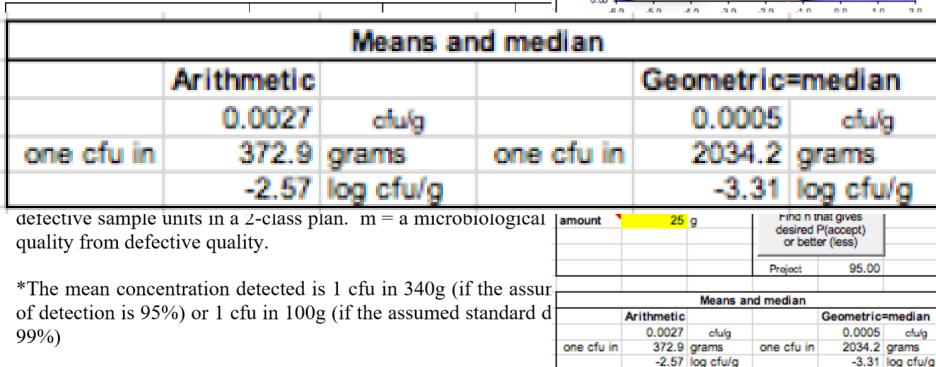
Criteria for pathogenic microorganisms

These are to be applied to the finished product (powder form) after primary packaging or anytime thereafter up to the point when the primary package is opened.

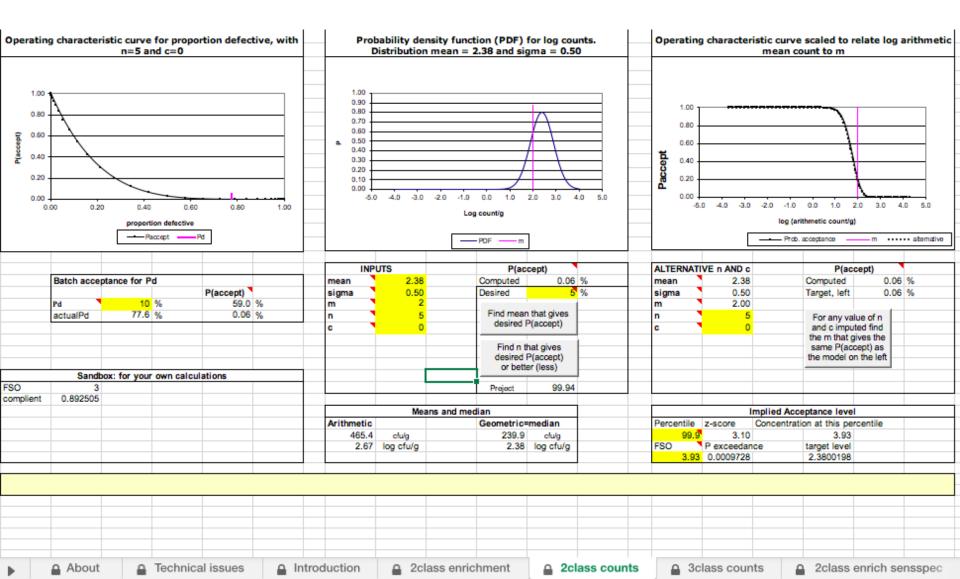
Microorganisms	n	c	m	Class Plan
Enterobacter sakazakii (Cronobacter species)*	30	0	0/10 g	2
Salmonella ^{**}	60	0	0/25 g	2

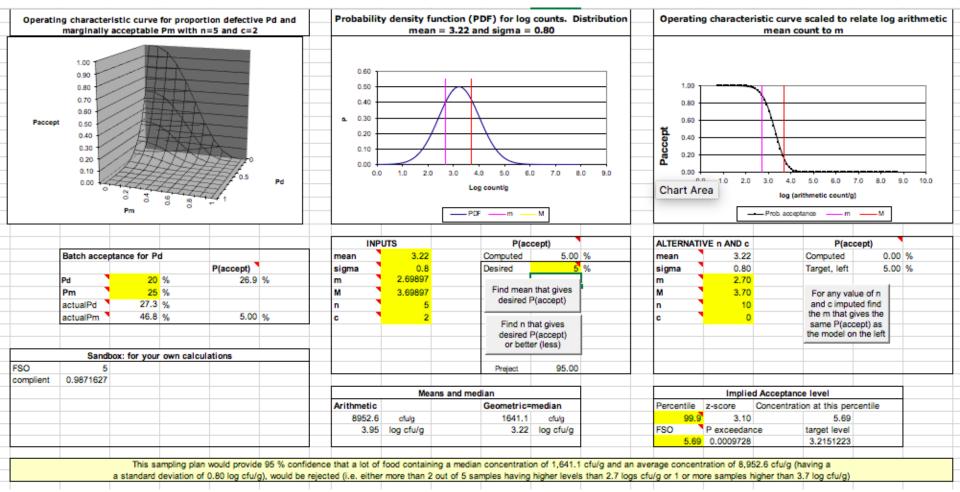

Where n = number of samples that must conform to the criteria: c = the maximum allowable number of defective sample units in a 2-class plan. m = a microbiological limit which, in a 2-class plan, separates good quality from defective quality.

*The mean concentration detected is 1 cfu in 340g (if the assumed standard deviation is 0.8 and probability of detection is 95%) or 1 cfu in 100g (if the assumed standard deviation is 0.5 and probability of detection is 99%)

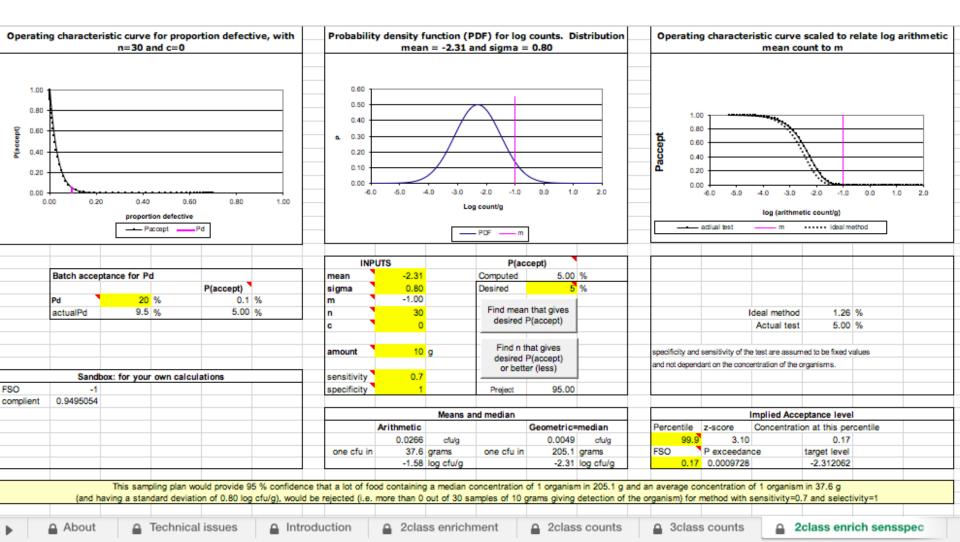


Criteria for pathogenic microorganisms

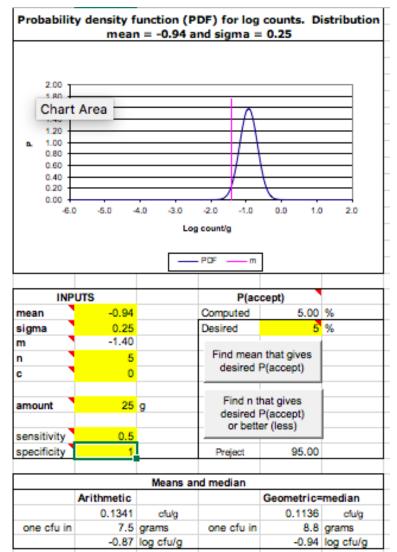

These are to be applied to the finished product (powder form) a up to the point when the primary package is opened.


Criteria for hygiene indicators in milk powder processing (3 class enumeration)

Microorganisms	n	c	m	Μ	Class Plan
Mesophilic Aerobic Bacteria [*]	5	2	500/g	5000/g	3


* mesophiles: 3 class counts:1641 cfu/g (8952 cfu/g arithmetic)

Can also consider method sensitivity and specificity ...



Can also consider method sensitivity and specificity ...

2.00 -					
1.80					
1.60			^		
1.40					
a. 1.00					
0.80					
0.60					
0.40					
0.00					
-6.0	0 -5.0 -	4.0 -3.0	-2.0 -1.0	0.0 1.0	2.0
		Log	count/g		
	UTS			cept)	
mean	-1.64		Computed	5.00	
mean sigma	-1.64 0.25			5.00	%
mean sigma m	-1.64 0.25 -1.40		Computed Desired	5.00	
mean sigma m n	-1.64 0.25 -1.40 5		Computed Desired Find mean	5.00 5 n that gives	
mean sigma m n	-1.64 0.25 -1.40		Computed Desired Find mean	5.00	
mean sigma m n c	-1.64 0.25 -1.40 5 0		Computed Desired Find mean desired	5.00 5 n that gives P(accept)	
mean sigma m n	-1.64 0.25 -1.40 5	9	Computed Desired Find mean desired Find n t	5.00 5 n that gives	
mean sigma m n c amount	-1.64 0.25 -1.40 5 0 25	9	Computed Desired Find mean desired Find n t desired	5.00 5 n that gives P(accept) hat gives	
mean sigma m c amount sensitivity	-1.64 0.25 -1.40 5 0 25		Computed Desired Find mean desired Find n t desired or bett	5.00 5 h that gives P(accept) hat gives P(accept) er (less)	
mean sigma m c amount sensitivity	-1.64 0.25 -1.40 5 0 25		Computed Desired Find mean desired Find n t desired	5.00 5 n that gives P(accept) hat gives P(accept)	
mean sigma m c amount sensitivity	-1.64 0.25 -1.40 5 0 25		Computed Desired Find mean desired Find n t desired or bett	5.00 5 h that gives P(accept) hat gives P(accept) er (less)	
mean sigma m c amount sensitivity	-1.64 0.25 -1.40 5 0 25		Computed Desired Find mear desired Find n t desired or bett Preject	5.00 5 h that gives P(accept) hat gives P(accept) er (less)	%
mean sigma m n c amount	-1.64 0.25 -1.40 5 0 25 25 1		Computed Desired Find mear desired Find n t desired or bett Preject	5.00 5 n that gives P(accept) hat gives P(accept) er (less) 95.00	%
mean sigma m c amount sensitivity	-1.64 0.25 -1.40 5 0 25 1 1 1 Arithmetic 0.0267	Means ar	Computed Desired Find mear desired Find n t desired or bett Preject	5.00 5 h that gives P(accept) er (less) 95.00 Geometric= 0.0227	%

Conclusions

- understanding the probability of detecting an organism in a sample can be used to quantify the detection limits of sampling schemes
- the ICSMF Sampling Plan spreadsheet automates this process
- may need to make some assumptions about SD in the lot, and reliability of the method

Thank you for your attention ...