

Statistics underlying Sampling Plans for Microbiological Criteria

Delivered by: Marcel Zwietering

Sampling plan: example

Food category: powdered infant formulae (PIF) Safety Criteria:

Microorganism	Sampling plan		Sample weight (g)	Analytical method
	n	С		
Cronobacter spp.	30	0	10	ISO/TS 22964
Salmonella	60	0	25	ISO 6579

CODEX Code of hygienic practice for powdered formulae for infants and young children CAC/RCP 66-2008

Qualitative, 2 class, c=0

Sampling plan: example

Food category: powdered infant formulae (PIF)

Hygiene Criteria:

Micro-organism	Sampling plan		m	М	Analytical method
	n	С			
Mesophiles	5	2	500/g	5000/g	ISO 4833
Enterobacteriaceae	10	2	0/10 g	-	ISO 21528- 1/21528-2

CODEX Code of hygienic practice for powdered formulae for infants and young children CAC/RCP 66-2008

Quantitative, 3 class, c≠0 Qualitative, 2 class, c≠0

The anatomy of a sampling plan

Qualitative and Quantitative plans: +/-: 0/25g 0/10g

2 class and 3 class plans

2: +/- ≤100 cfu/g / >100 cfu/g

≤100 cfu/g or >100 cfu/g

3: x≤500 /g; 500<x≤5000; >5000/g

c= 0 or *c*≠0

Class	Qual/Quant	c=0 ?
2	Qual	0
2	Qual	#
2	Quan	0
2	Quan	#
3	Quan	#

The anatomy of a sampling plan

Microorganism	Sampling plan		Sample weight (g)	Analytical method
	n	С		
Cronobacter spp.	30	0	10	ISO/TS 22964
Salmonella	60	0	25	ISO 6579

2-class, qualitative, c=0

Cronobacter PIF (2-class, qualitative)

n=30 c=0 m=0/10g

30 samples

None of 30 samples is allowed to show an analytical result exceeding the microbiological limit

Microbiological limit (defective at 1 cfu/10 g or more)

Sampling plan: example

Micro-organism	Sampling plan		m	М	Analytical method
	n	С			
Mesophiles	5	2	500/g	5000/g	ISO 4833
Enterobacteriaceae	10	2	0/10 g	-	ISO 21528- 1/21528-2

2-class, qualitative, c=2

Enterobacteriaceae PIF (2-class, qualitative)

n=10 *c*=2 *m*=0/10 g

10 samples

Two of 10 samples are allowed to show an analytical result exceeding the microbiological limit

Microbiological limit (defective *sample* at 1 cfu/10 g or more)

Sampling plan: example

Micro-organism	Sampling plan		m	М	Analytical method
	n	С			
Mesophiles	5	2	500/g	5000/g	ISO 4833
Enterobacteriaceae	10	2	0/10 g	-	ISO 21528- 1/21528-2

3-class, quantitative, c=2

Mesophiles – PIF (3-class, quantitative) $n=5 c_m=2 m=500/g M=5000/g$ 5 samples **Microbiological limit** (defective) at >5,000 cfu/g Two of 5 samples are

I wo of 5 samples are allowed to show an analytical result exceeding the microbiological limit *m* but not *M*

Microbiological limit (marginal defective) at >500 cfu/g

Sampling plan:

Ready-to-eat (no growth) foods from the end of manufacture or port of entry (for imported products), to the point of sale

Micro-organism	Sampling plan		m	М	Analytical method
	n	С			
Listeria monocytogenes	5	0	100 cfu/g	-	ISO 11290-2

Listeria– no growth (2-class, quantitative) n=5 c=0 m=100 / g5 samples None of the 5 samples are Microbiological limit allowed to show an (defective) analytical result at >100 cfu/g exceeding the microbiological limit m

Ministry of Health and Family Welfare, Govern

Annex I to Regulation (EC) No 2073/2005 is amended as follows:

- in Chapter 2, Section 2.1 is amended as follows:
 - (a) the table is amended as follows:
 - (ii) the following row 2.1.9 is added:

Food	Micro-	Sam	pling plan	Lin	nits	Analytical	Stage	Action in case
category	organisms	n	с	m	Μ	reference method	where of the unsatisfactor criterion results applies	
"2.1.9 Carcases of broilers	Campylobacter spp.	50 (*)	c=20 From 1.1.2020 c=15; From 1.1.2025 c=10	100 cfu		EN ISO 10272-2	Carcases after chilling	Improvements in slaughter hygiene, review of process controls, of animals origin and of the biosecurity measures in the farms of origin

2-class, quantitative, c=20..15..10

Sampling plan: Hygiene criterion *Campylobacter* broilers

Micro-organism	Sampling plan		m	М	Analytical method
	n	С			
<i>Campylobacter</i> spp.	50	20	1000 cfu/g	-	ISO 10272-2

2-class, quantitative, c=20..15..10

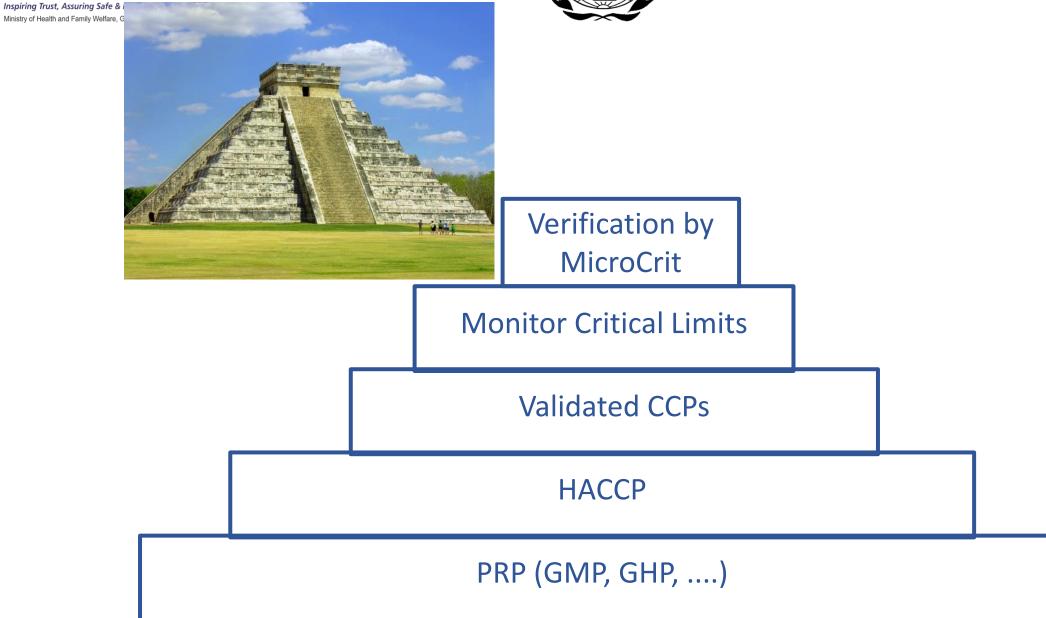
Campylobacter-broilers (2-class, quantitative)

n=50 *c*=20 *m*=1000 /g

50 samples

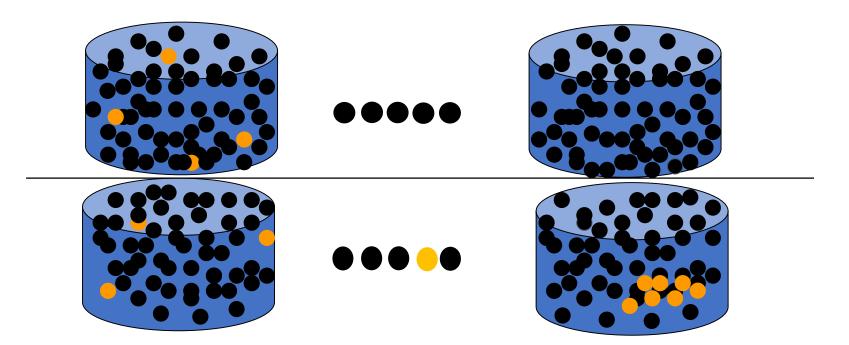
20 of the 50 samples are allowed to show an analytical result exceeding the microbiological limit *m*

Microbiological limit (defective) at >1000 cfu/g



The anatomy of a sampling plan

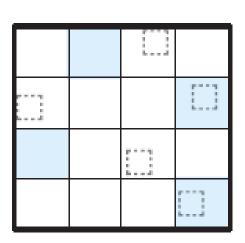
Class	Qual/Quant	c=0 ?	Example
2	Qual	0	Salmonella in PIF
2	Qual	#	Enterobacteriaceae in PIF
2	Quan	0	Listeria in no growth RTE
2	Quan	#	Campylobacter in broilers
3	Quan	≠	Mesophiles in PIF


verification by MicroCrit

End product testing useful or lottery ?

Positives mean something, negatives are no guarantee

MISCONCEPTION 1 *If the tested sample units are negative, the batch is free of the pathogen.*



Statistical Aspects of Food Safety Sampling

I. Jongenburger, H.M.W. den Besten, and M.H. Zwietering

Annu. Rev. Food Sci. Technol. 2015. 6:479-503

a

Homogeneous contamination

d

Not

contaminated

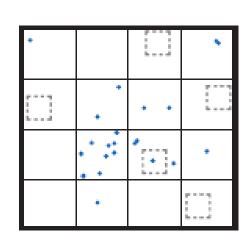
Localized high-level

contamination

for some of

94

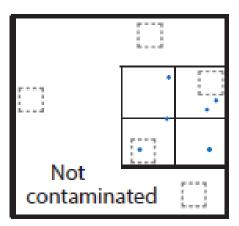
112


81

58

22	113	94	49
8	10	93	105
520	59	: <mark>81</mark>	17
19	101	36	33

b


Heterogeneous high-level contamination

C

Heterogeneous low-level contamination

e

Localized low-level contamination

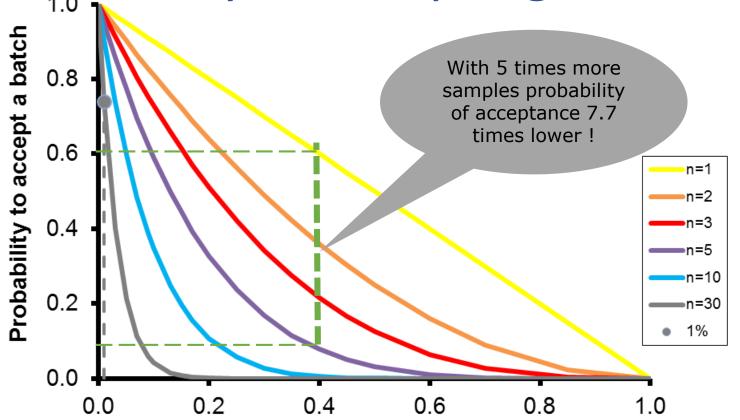
a

Homogeneous contamination

Probability that no contamination is found

P _{defective}	n=1	
	1- $P_{def} =$	
0.00	1.00	
0.01	0.99	
0.05	0.95	
0.10	0.90	
0.15	0.85	
0.20	0.80	
0.25	0.75	
0.30	0.70	

1 % defectives of 100,000 products, means 1,000 products

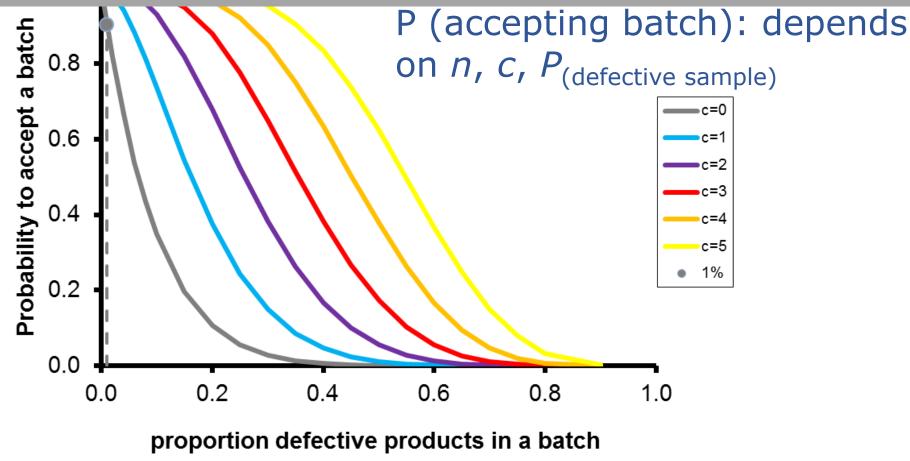

$$P_{accept} = (1 - P_{defective})^n$$

Probability of accepting a lot, c=0

proportion defective products in a batch

MISCONCEPTION 2

Using a realistic sampling scheme, it is possible to test for absence of a pathogen in a batch of food.


Inspiring Trust, Assuring Safe & Ministry of Health and Family Welfare, (

MISCONCEPTION 3

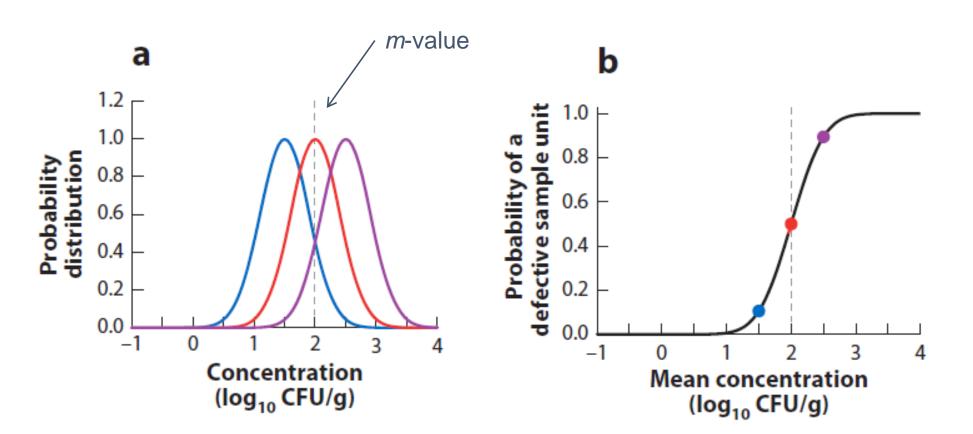
Current sampling plans assume that microorganisms follow the binomial distribution.

If $c \neq 0$ $P_{accept} = binomial(k \leq c, n, P_{defective})$

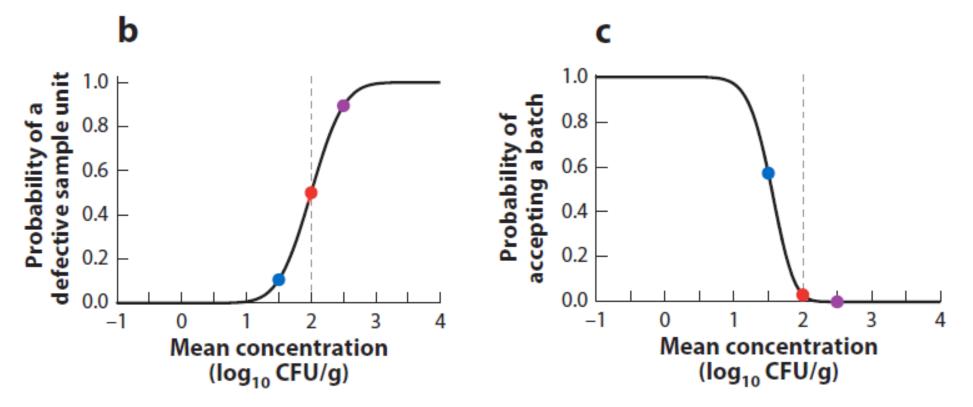
b

22	113	94	49
8	10	93	105
520	59	:81	17
19	101	36	33

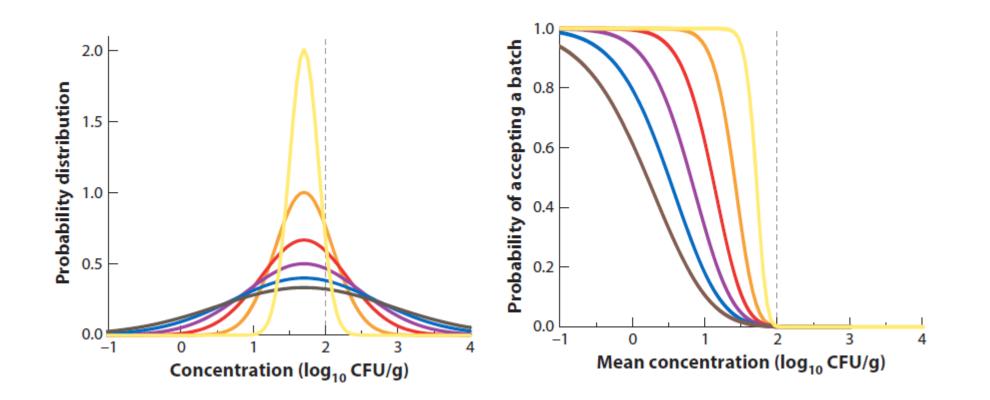
Heterogeneous high-level contamination


MISCONCEPTION 4

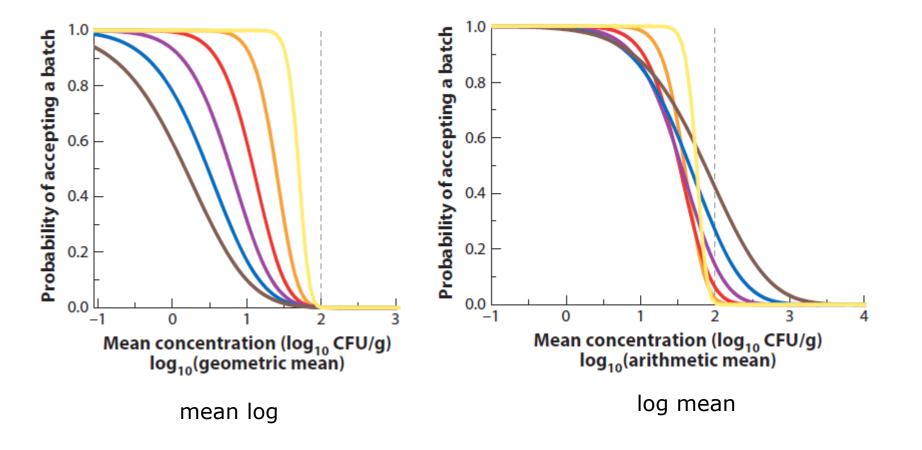
Current sampling plans assume that microorganisms are homogeneously distributed in a batch.


$$\begin{aligned} P_{defective} &= P_{normal}(\log_{10} C > m, \mu_{\log C}, \sigma_{\log C}) \\ &= 1 - P_{normal}(\log_{10} C \le m, \mu_{\log C}, \sigma_{\log C}), \end{aligned}$$

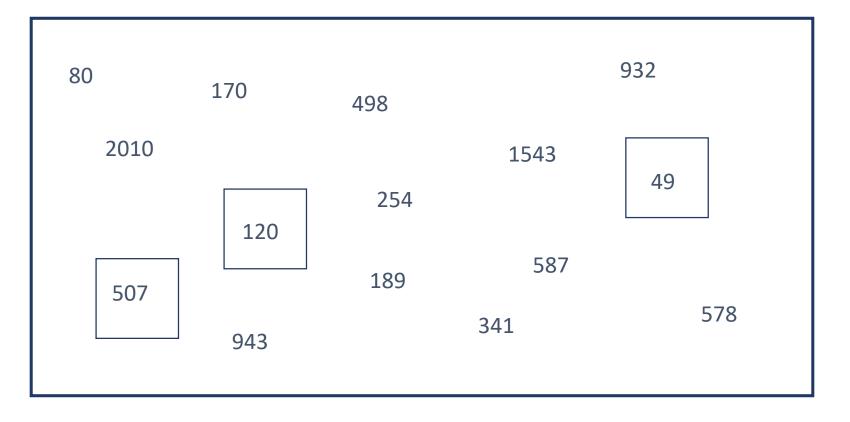
OC curve: Operating Characteristic


 $P_{accept}(c, n, P_{defective}) = binomial(k \le c, n = n, P = P_{defective})$ n=5

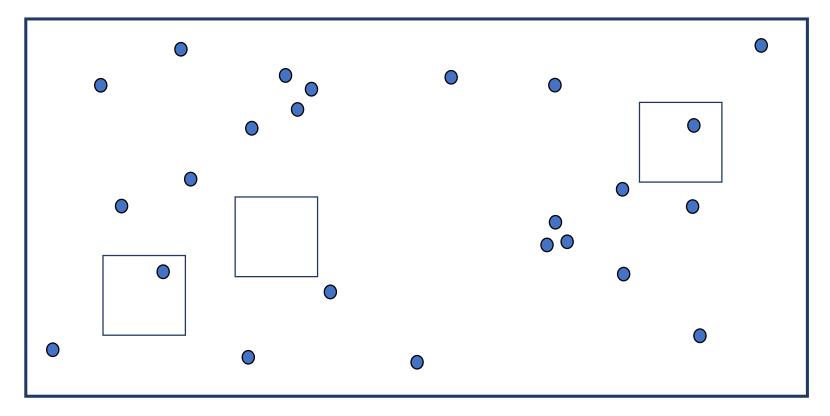
 $n=10; \sigma=1.2$ (brown), 1.0 (blue), 0.8 (purple), 0.6 (red), 0.4 (orange), and 0.2 (yellow) \log_{10} CFU/g.



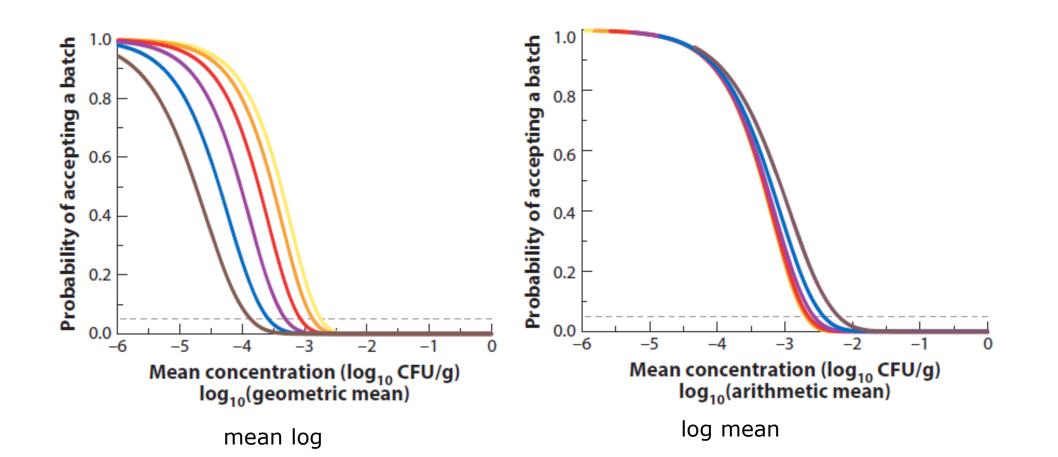
 $n=10; \sigma=1.2$ (brown), 1.0 (blue), 0.8 (purple), 0.6 (red), 0.4 (orange), and 0.2 (yellow) \log_{10} CFU/g.


 $\log_{10}(\bar{C}) = \overline{\log_{10} C} + 0.5 \cdot \ln 10 \cdot \sigma_{\log_{10} C}^2$

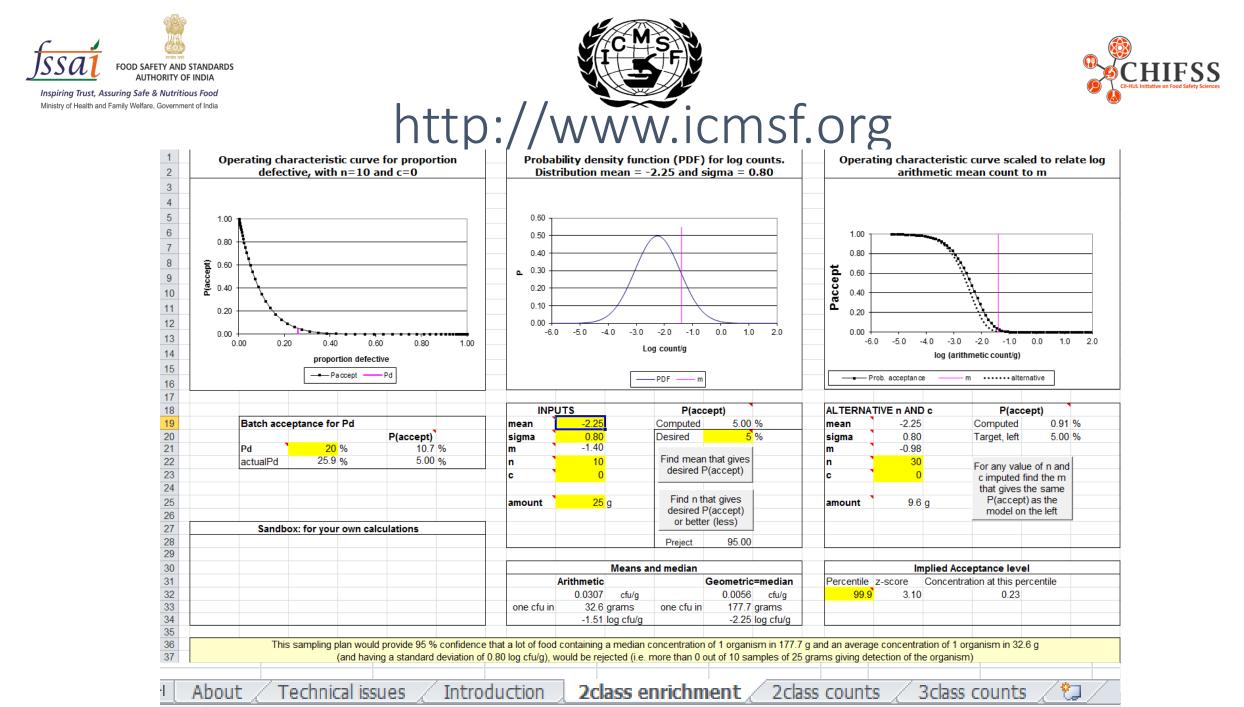
Distribution counts



Distribution enrichment



$n=60; \sigma=1.2$ (brown), 1.0 (blue), 0.8 (purple), 0.6 (red), 0.4 (orange), and 0.2 (yellow) \log_{10} CFU/g.



Three statistical phenomena are relevant:

- 1. the actual spatial distribution of microorganism in the food batch,
- 2. the statistical process of taking a sample unit and it being defective
- 3. the acceptance of the lot based on *n* sample units, of which *c* are accepted to be positive and $P_{defective}$

For example

- 1. organism lognormally distributed in product
- 2. taking one sample is a Poisson process
 - $P_{\text{defective}}$ is a Poisson-lognormal distribution of contaminant in the sample unit
- 3. P_{accept} of a lot based on $P_{defective}$, *n* sample units, and *c* is a binomial process
 - P_{accept} is then a Binomial(Poisson(LogNormal)) distribution !

.

Conclusions

- All samples negative is no guarantee of safety
- A positive sample is indicating unsafety
- Sampling is useful for verification
- As function of the arithmetic mean the effect of the spread is limited
- Tools exist !

Control of safety is only to a very limited extend supported by end-product testing

