

Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India

Microbiological Sampling and Testing Approaches for Food Safety Management &

Role of Hygiene Indicators

KATHERINE M.J. SWANSON, PH.D.

KMJ Swanson Food Safety, Inc.

Mendota Heights, MN USA

FSSAI-ICMSF-CHIFSS Symposium Microbiological Food Safety: Sampling and Testing in Food Safety Management 9 October 2018 New Delhi, India

Discussion Topics

- Definition of indicators
- Limitations of indicators
- Examples of indicator tests
- Use of indicator data

Objectives of Testing in Food Processing

- Satisfy customer and regulatory requirements
- Verify process control
- Identify potential issues BEFORE they become real problems

Definition – Utility Tests

- Provide information about:
 - General contamination
 - Potentially reduced shelf life
 - Incipient spoilage
- Should be relevant to food; e.g.,
 - Fermented foods may have high aerobic colony counts, thus are not relevant
 - Pasteurized product should have low aerobic colony counts

- Examples
 - Aerobic colony count
 - Direct microscopic count
 - Yeast and mold count
 - Pseudomonads in aerobically stored meat
 - Lactobacilli in mayonnaise

Definitions – Indicator Tests

- Provide information as a measure of GHP or process control
- May indicate the potential for presence of pathogen microorganisms

- Examples
 - Coliforms
 - Enterobacteriaceae
 - E. coli
 - *Listeria*-like microorganisms

Limitations of Indicator Tests

Limitations of Indicators

- Relationship between pathogen and indicators is NOT universal
 Relationship between statements
 Examples: Exa
 - Influenced by process and product
- May indicate conditions that allow presence of pathogens
 - Little correlation with **actual** presence

- Examples: Enterobacteriaceae or coliforms
 - Useful for milk pasteurization – should be <10/g
 - Useful for blanched vegetables – may be found a low levels (<100/g), but not always absent
 - Limited or no use for fresh produce – naturally present, sometimes at high levels because there is no kill step

Limitations of Indicators

- Relationship between a pathogen and indicator influenced by product and process → NOT universal
- May indicate conditions that allow presence of pathogens
- Enterobacteriaceae or coliforms examples:

Product	Utility	Typical levels
Pasteurized milk	Useful	<10/g
Blanched vegetables	Useful, but not always absent	<100/g
Fresh produce	Limited or no use	Naturally present

Examples of Indicator Tests

From ICMSF (2011) *Microorganisms in Foods 8: Use of Data* for Assessing Process Control and Product Acceptance

Examples of Indicators – End Product

Product		Sampling Plan and Limit			
(relative importance)	Indicator or Utility	n	С	m	М
Frozen vegetables, blanched (medium)	Aerobic colony count	5	2	10 ⁴ /g	10 ⁵ /g
	Enterobacteriaceae	5	2	10 ¹ /g	10²/g
	E. coli	5	2	<10¹/g	-
Fresh-cut RTE vegetables (medium)	E. coli	5	1	10 ¹ /g	10²/g

From ICMSF (2011) *Microorganisms in Foods 8: Use of Data for Assessing Process Control and Product Acceptance*

Examples of Indicators – End Product

Sampling Plan and Limits

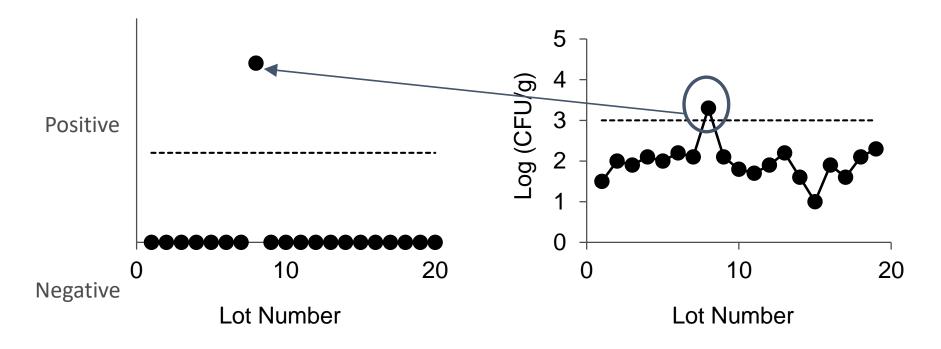
Product					
(relative importance)	Indicator or Utility	n	С	m	М
Cooked meat (medium)	Aerobic colony count	5	2	10 ⁴ /g	10 ⁵ /g
	E. coli	5	2	10¹/g	10²/g
	S. aureus	5	1	10²/g	10³/g
Dry milk powder (high)	Aerobic colony count	5	2	10 ⁴ /g	10 ⁵ /g
	Enterobacteriaceae	5	2	<3/g	9.8/g
Water for processing	Coliforms	1	0	0/100mL	-

From ICMSF (2011) *Microorganisms in Foods 8: Use of Data for Assessing Process Control and Product Acceptance*

Example: Dry Milk Powder

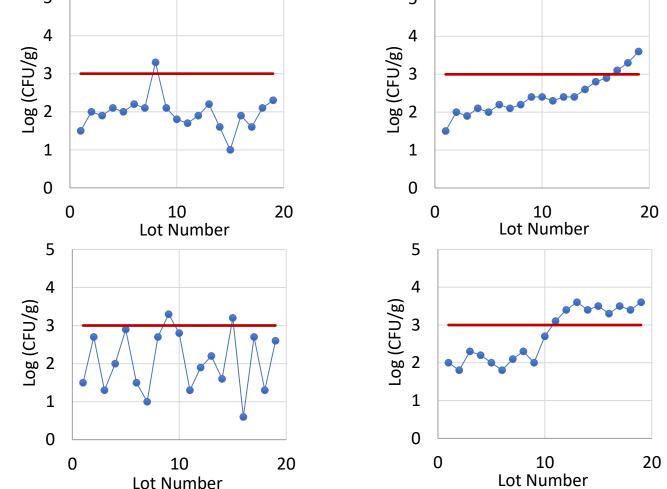
Relative Importance		Test	Sampling Plan and Limits				
In-process	High	Enterobacteriaceae	Same as end product				
	High	Salmonella	Absent in any samples				
Processing environment	High	Enterobacteriaceae	≤100 CFU/g or sample				
	High	Salmonella	Absent in any samples				
End product			n	С	m	М	
	High	Aerobic colony count	5	2	10 ⁴ /g	10 ⁵ /g	
	High	Enterobacteriaceae	5	2	<3/g	9.8/g	
	Low*	Salmonella	20×25g	0	0	-	
	*unless othe	r tests indicate a problem					

From ICMSF (2011) *Microorganisms in Foods 8: Use of Data for Assessing Process Control and Product Acceptance*


Using Indicator Data

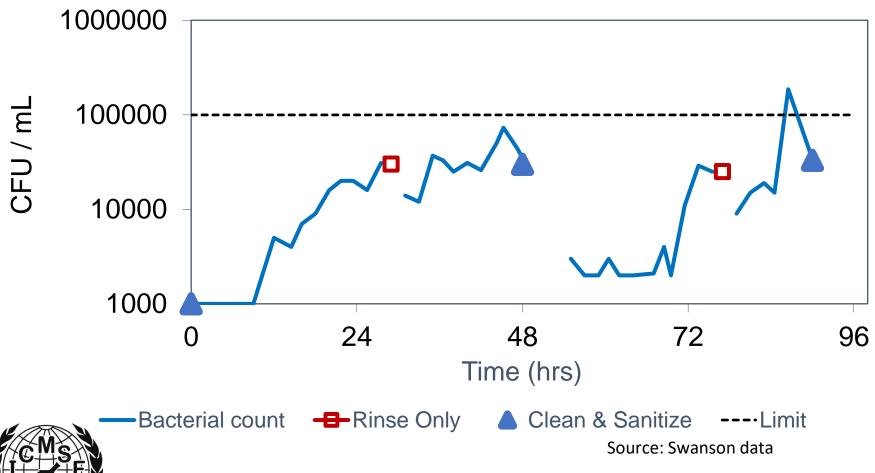
Quantitative Data Can Be More Informative Than Qualitative Data

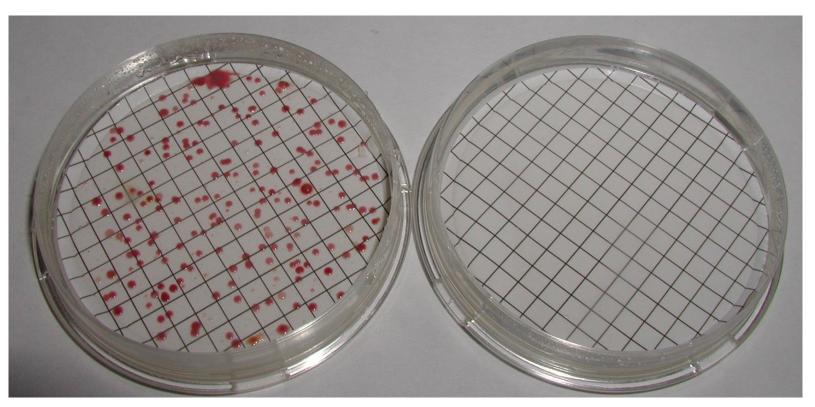
Presence/Absence


Quantative

From ICMSF (2002, 2018) *Microorganisms in Foods 7: Microbiological Testing in Food Safety Management*

Trend Analysis Can Inform Process Control 5




From ICMSF (2002, 2018) *Microorganisms in Foods 7: Microbiological Testing in Food Safety Management*

Aerobic Colony Count in Blanched Vegetable Flume Water

IMPACT OF SANITATION VERSUS WATER RINSE

Membrane Filter Coliform Count 100 mL OF SANITIZER FROM CENTRAL SANITIZER HOSE

Before cleaning nozzle and hose

After cleaning nozzle and hose

Source: Boufford personal communication

Concluding Remarks

- Indicator tests:
 - Provide a practical and useful tool for verification in many food production environments
 - Can provide actionable information to direct corrective action efforts in a timely manner
 - May be coupled with pathogen testing, especially when unusual results are detected
- Application varies by product, location, history, and other factors
- Trend analysis maximizes the benefit of indicator testing.

