

Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India


ICMSF's History and approach to useful testing for food safety, including Microbiological Criteria concept

Martin B. Cole, Ph.D.

Science Director CSIRO Agriculture and Food

ICMSF Chairman

ICMSF and its Food Safety World audiences

books, position papers, advice to governments, Codex, FAO WHO

Annually meeting as a working party since 1962, 50 meetings in 28 countries

Raison d'etre Statement

Be a leading source for independent and impartial scientific concepts, that when adopted by governmental agencies and industry, will reduce the incidence of microbiological food-borne illness and food spoilage worldwide and facilitate global trade.

About the ICMSF

- 19 food microbiologists from 17 different countries
- Broad professional background
- Selected on technical expertise, not as national delegates
- Use of extensive network of consultants/experts
- All work is voluntary and without honoraria
- The recommendations have no official status

Publications & Position Papers

Panels and Workshops

Sub-Commissions & Working groups Translate and Communicate ICMSF Principles

Portuguese 8 **Spanish**

Evolution of Food Safety Management

1960s – 1980s Methods and Testing

1980s-2000s Microbial Ecology HACCP

2000s-2020s Risk Management

Microbiological Criteria

MICRO ORGANISMS IN FOODS 2 Sampling for microbiological analysis: Principles and specific applications

Second edition
ICMSF
Blackwell Scientific Publications

1st Edition, 1974 2nd Edition, 1986

- Concept first published in ICMSF Book 2
- The concept recommends 15 Cases to manage safety and suitability of food in trade
- It follows a risk-based approach, using sampling plans for proportional stringency

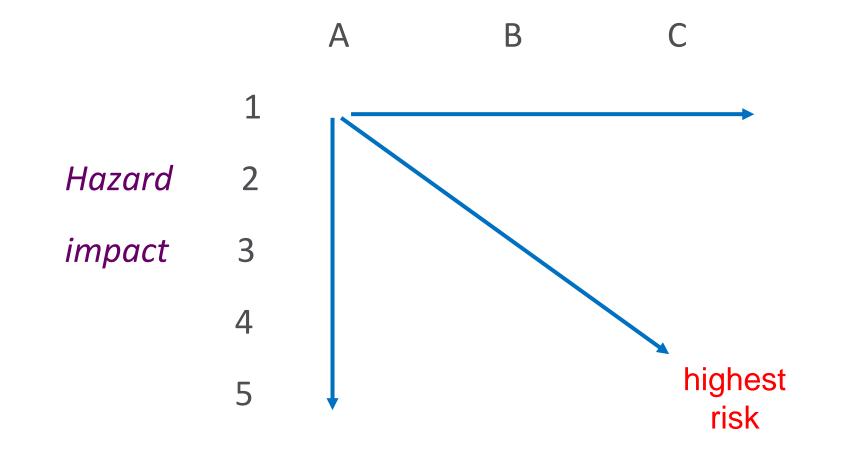
ICMSF Cases

Rationale

The greater the risk, the more stringent the management of the hazard needs to be

- A greater risk posed by a hazard is reflected by a higher Case number
- For increasingly higher Case numbers, sampling plans have been selected with proportionally higher performance

ICMSF Cases (cont.)


15 cases reflecting relative risk

- Considering:
 - Harmfulness and severity of the hazard
 - Intended consumer population
 - Conditions of food handling and use

Risk Categorization Matrix

Food handling and use conditions

ICMSF Categories of Microorganisms

Utility	Spoilage, reduced shelf life, no
	health concern

Indicator Measure of GHP

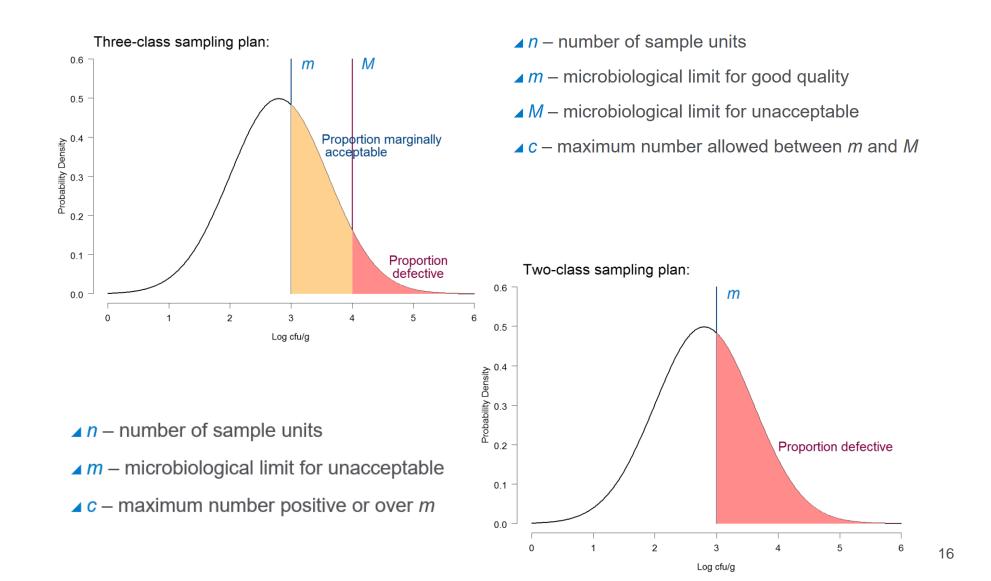
e.g. total counts (TVC, etc.), yeast and mold *e.g.* Coliforms, Enterobacteriaceae.

Moderate hazard	Not life threatening, short duration, self limiting, no sequelae
Serious hazard	Incapacitating, usually not life threatening

Severe Life threatening, chronic sequelae, *or* long duration *or* designed for sensitive subpopulation

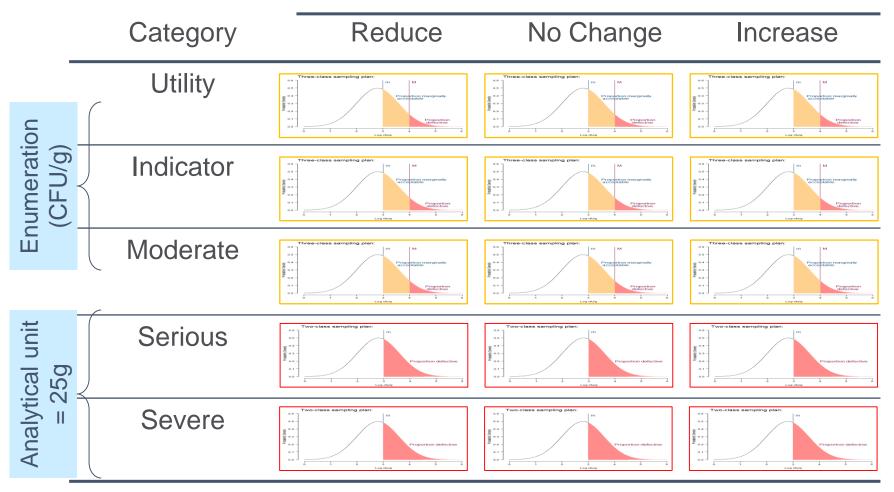
e.g. S. aureus, B. cereus, C. perfringens, Norovirus. e.g. Salmonellae, Shigella flexneri, Yersinia enterocolitica.

e.g. E. coli O157:H7, *C. botulinum* toxin or *Cronobacter* (infants).



Lot Acceptance

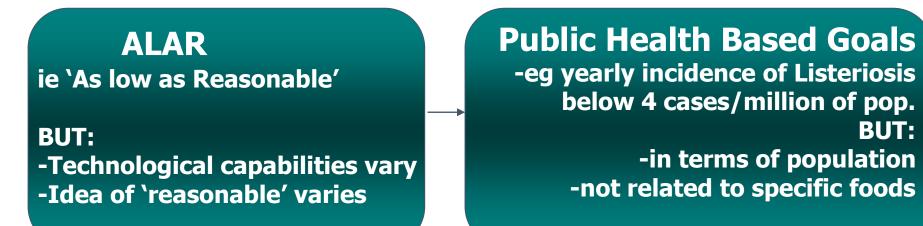
- Food lots represent units produced under uniform conditions
- Different microorganisms may be present in food lots at different levels
- Sampling plans with proportional performance are used to determine whether a lot of food is acceptable


Sampling plan types

Sampling Plans for Lot Acceptance

Likely Change Before Consumption

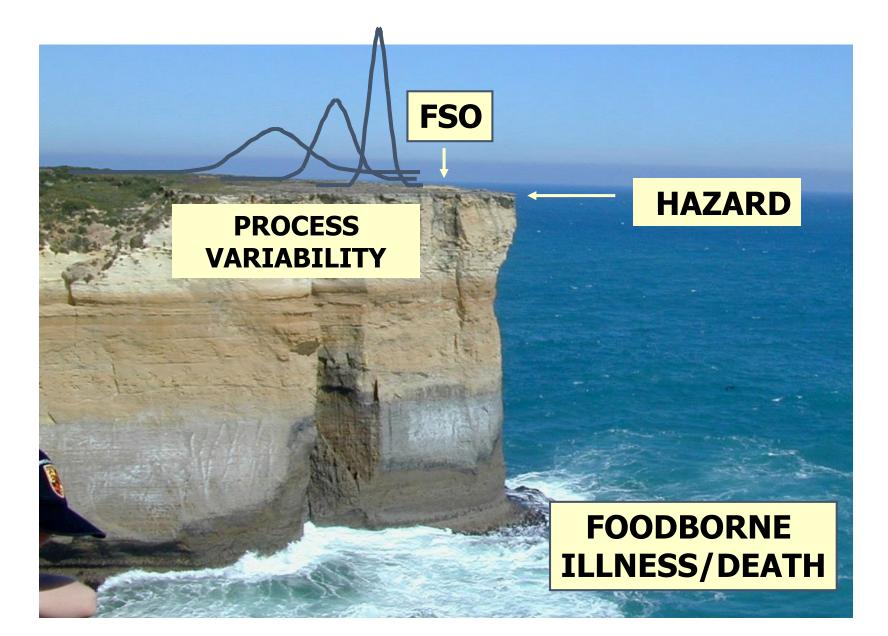
Sampling Plans for Lot Acceptance (cont.)


Likely Change Before Consumption

Category		Reduce	No Change	Increase	
Utility		Case 1	Case 2	Case 3	
		n=5, c=3 n=5, c=2		n=5, c=1	
Indicator Moderate		Case 4 Case 5		Case 6	
		n=5, c=3 n=5, c=2		n=5, c=1	
		Case 7 Case 8		Case 9	
~		n=5, c=2	n=5, c=1	n=10, c=1	
	Serious	Case 10	Case 11	Case 12	
		n=5, c=0	n=10, c=0	n=20, c=0	
	Severe	Case 13	Case 14	Case 15	
		n=15, c=0	n=30, c=0	n=60, c=0	
		Utility Indicator Moderate	Utility Case 1 n=5, c=3 Indicator Case 4 n=5, c=3 Moderate Case 7 n=5, c=2	Utility Case 1 Case 2 n=5, c=3 n=5, c=2 Indicator Case 4 Case 5 n=5, c=3 n=5, c=2 Moderate Case 7 Case 8 n=5, c=2 n=5, c=1	

New Approaches to Risk Management

BUT:



The Issue Behind the Issue:

Equivalence: Do two systems of food safety risk management (e.g. inspection, HACCP, processing) provide the same degree of public health protection?

Managing the 'Food Safety Cliff

Performance Criteria

$\mathbf{H_0} - \boldsymbol{\Sigma}\mathbf{R} + \boldsymbol{\Sigma}\mathbf{I} \leq \mathbf{FSO}$

- FSO = food safety objective
- H_o = initial level of the hazard
- ΣI = total increase (growth or recontamination)
- ΣR = total reduction (inactivation or removal)

Risk-based use of preventative controls in the production chain of fresh produce

Production & Primary Handling

Minimizing initial levels

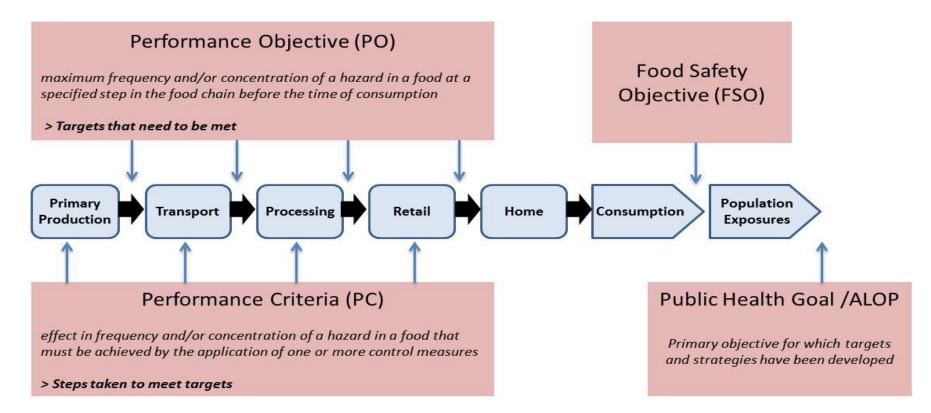
Water management Choice of fertilizer Sanitation of equipment Rapid cooling Hygiene of personnel Monitoring Processing & Packaging

Reducing levels

Processing & Washing steps Environmental surveillance Monitoring **Distribution & Shelf-life**

Minimum Standards

in levels *Temperature management Choice of storage atmosphere Shelf-life Monitoring*

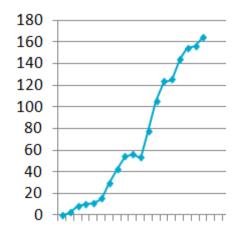

an increase

Good Agricultural Practice (GAPs) Good Manufacturing Practice (GMPs) Hazard Analysis Critical Control (HACCP) Performance Standards Guidelines/Regulations

Testimony before the US House of Representatives "Food and Drug Administration Globalization Act of 2009", March 11, 2009

Overview of setting public health targets and performance metrics

Acceptable Level of Protection (ALOP); Food Safety Objective (FSO); Performance Objective (PO); Performance Criteria (PC)


Hierarchy of Risk Management Options

Impact of New Risk Management

- Increased flexibility....innovation
- Science based & increased transparency
- Will impact
 - Shared responsibility across chain
 - Stringency of HACCP
 - Micro Criteria more science based
 - Equivalency of new processes

1995 ----> 2014

No. Papers with Food Safety Objective in title

When & Where to Test for Food Safety Management

- When there is good evidence that:
 - There is a microbiological problem
 - Food safety or quality
 - Historical or current

AND

• Testing will help to control the problem

Relating Criteria to other risk management metrics

Determining the concentration of microorganisms controlled by attributes sampling plans

J. David Legan ^{a,*}, Mark H. Vandeven ^a, Susanne Dahms ^b, Martin B. Cole ^{a,1}

 ^a Nabisco Inc., 200 DeForest Avenue, East Hanover, NJ 07936-1944, USA
 ^b Free University of Berlin, Bachstelzenweg, 29-31, D-14195 Berlin, Germany Received 30 March 2000; received in revised form 12 July 2000

Relating microbiological criteria to food safety objectives and performance objectives

M. van Schothorst^a, M.H. Zwietering^{b,*}, T. Ross^c, R.L. Buchanan^d, M.B. Cole^e, International Commission on Microbiological Specifications for Foods (ICMSF)

Performance of ICMSF cases

Type and likely change to level of hazard	Reduce	No change	May increase
Indirect e.g. Aerobic plate counts (APC)	Case 4 (3-class, n=5, c=3) e.g. m=1000/g, M=10000/g 5100cfu/g	Case 5 (3-class, n=5, c=2) e.g. m=1000/g, M=10000/g 3300cfu/g	Case 6 (3-class, $n=5$, $c=1$) e.g. $m=1000/g$, $M=10000/g$ 1800cfu/g
Moderate e.g. S.aureus	Case 7 (3-class, n=5, c=2) e.g. m=100/g, M=10000/g 2600cfu/g	Case 8 (3-class, $n=5$, $c=1$) e.g. $m=100/g$, $M=10000/g$ 1100cfu/g	Case 9 (3-class, $n=10, c=1$) e.g. $m=100/g, M=10000/g$ 330cfu/g
Serious e.g. Salmonella sp	Case 10 (2-class, $n=5, c=0$) e.g. $m=0/25g$ 1 cfu/55g	Case 11 (2-class, $n=10, c=0$) e.g. $m=0/25g$ 1 cfu/100g	Case 12 (2-class, $n=20, c=0$) e.g. $m=0/25g$ 1 cfu/490g
Severe e.g. E.coli 0157:H7	Case 13 (2-class, $n=15$, $c=0$) e.g. $m=0/25g$ 1 cfu/330g	Case 14 (2-class, $n=30, c=0$) e.g. $m=0/25g$ 1 cfu/850g	Case 15 (2-class, $n=60, c=0$) e.g. $m=0/25g$ 1 cfu/2000g

International Commission on Microbiological Specifications for Foods (ICMSF)

Microorganisms in Foods

Use of Data for Assessing Process Control and Product Acceptance

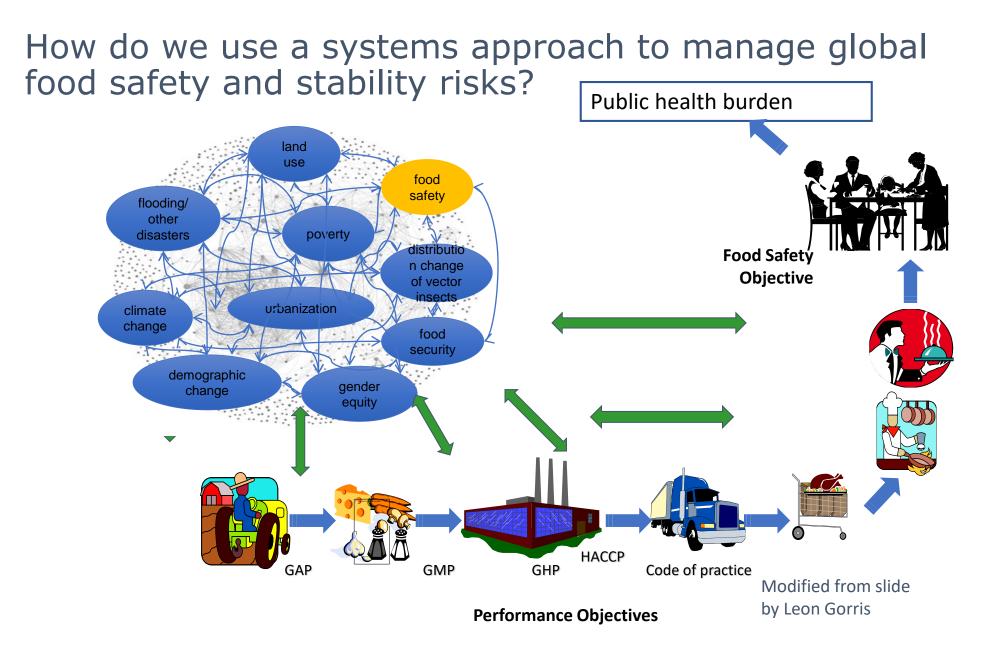
• Objectives

- Provide guidance on appropriate and inappropriate testing of food processing environments, during processing, and finished product testing.
- Expands on the use of trend analysis and across-lot data.
- Available through Springer:
 - http://www.springer.com/food+science/book/978-1-4419-9373-1
 - Can purchase individual electronic chapters

International Commission on Microbiological Specifications for Foods (ICMSF)

Microorganisms in Foods

Use of Data for Assessing Process Control and Product Acceptance


🖉 Springer

Relative importance	Useful testing				
Critical in- Low gredients	Initial contamination is highly dependent on implementation of good agricultural practices (see Sect. 12.2).				
In-process High	Monitoring antimicrobial concentration is recommended to prevent cross contamination via wash water, flume water, etc.				
Low	Periodic microbiological testing of paired (i.e., before and after) pro- duce samples may be useful to assess effectiveness of these controls.				
Processing Medium environment	Periodic testing of food contact surfaces and processing environments are recommended to verify adequacy of cleaning and sanitization proto- cols. Potential assays include aerobic colony counts and <i>E. coli</i> .				
	Consider environmental testing for <i>Salmonella</i> in environments with a history of issues with birds or vermin.				
	Consider environmental testing for <i>Listeria</i> spp. or <i>L. monocytogenes</i> for refrigerated fresh-cut vegetables when growth may occur within usable shelf life.				
Shelf life Low	Where shelf life of fresh-cut vegetables is limited by microbiological activity, validate shelf life after major change in process technologies. Periodic verification through microbiological analysis for spoilage species may be beneficial for such products.				
End product Medium	Routine testing is not recommended but periodic testing for specific in- dicators using internal standard or those below may be useful to verify process control and trend analysis.				
	Sampling plan & Analytical limits/g*				
	Product Microorganism method ^a Case n c m M				
	Fresh-cut <i>E coli</i> ISO 7251 6 5 1 10^1 10^2 vegetables				
	Routine microbiological testing for pathogens is not recommended. Test for pathogens only when other data indicate potential for contamination.				
	Sampling plan &				

		Analytical me-		Sampling plan & limits/25g*				
Product	Microorganism	thod *	Case	n	с	m	М	
Fresh-cut vegetables	Salmonella	ISO 6579	12	20^{b}	0	0	-	
	E. coli O157:H7	ISO 16654	15	60 ^b	0	0	-	
	L. monocytogenes	ISO 11290-1	\mathbf{NA}^{c}	5 ^b	0	0	-	

Low Low Low

(Fumico Kasuga, 2016)

####